Skip to main content

Advertisement

Log in

Highly scattered Ir oxides on TiN as an efficient oxygen evolution reaction electrocatalyst in acidic media

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Here, a support-type composite catalyst TiN/IrO2 with an outstanding catalytic activity for OER in acid electrolyte was prepared by a colloidal method. It was found the ultra-fine IrO2 nanoclusters (1.41 ± 0.19 nm) scattered on the TiN support like strawberry seeds, which not only provided the higher active surface area, but also exposed much more surface unsaturated Ir atoms with the higher reactive activity compared to saturated iridium atoms. And the mesoporous structure and high surface area inherited from the TiN carrier were also maintained in the composite. Benefit from these characteristics, the as-prepared TiN/IrO2 with IrO2 loading of 31 wt% possessed a mass-normalized OER activity of 874.0 A g−1(IrO2) at the potential of 1.6 V that was about 5.0 times of the unsupported IrO2 (176.0 A g−1IrO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Sun W, Zhou Z, Zaman WQ, Cao L, Yang J (2017) Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl Mater Interfaces 9(48):41855–41862

    CAS  Google Scholar 

  2. Tariq M, Zaman WQ, Sun W, Zhou Z, Wu Y, Cao L, Yang J (2018) Unraveling the beneficial electrochemistry of IrO2/MoO3 hybrid as a highly stable and efficient oxygen evolution reaction catalyst. ACS Sustain Chem Eng 6(4):4854–4862

    CAS  Google Scholar 

  3. Tackett BM, Sheng W, Kattel S, Yao S, Yan B, Kuttiyiel KA, Chen JG (2018) Reducing iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with nitride cores. ACS Catal 8(3):2615–2621

    CAS  Google Scholar 

  4. Reier T, Nong HN, Teschner D, Schlögl R, Strasser P (2017) Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv Energy Mater 7(1):1601275

    Google Scholar 

  5. Hu W, Wang Y, Hu X, Zhou Y, Chen S (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22(13):6010–6016

    CAS  Google Scholar 

  6. Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2(8):1765–1772

    CAS  Google Scholar 

  7. Xu J, Aili D, Li Q, Christensen E, Jensen JO, Zhang W, Bjerrum NJ (2014) Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ Sci 7(2):820–830

    CAS  Google Scholar 

  8. Hu W, Chen S, Xia Q (2014) IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium. Int J Hydrogen Energy 39(13):6967–6976

    CAS  Google Scholar 

  9. Tong J, Liu Y, Peng Q, Hu W, Wu Q (2017) An efficient Sb-SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium. J Mater Sci 52(23):13427–13443. Doi: https://doi.org/10.1007/s10853-017-1447-1

    Article  CAS  Google Scholar 

  10. Zhao S, Stocks A, Rasimick B, More K, Xu H (2018) Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers. J Electrochem Soc 165(2):F82–F89

    CAS  Google Scholar 

  11. Oh HS, Nong HN, Strasser P (2015) Preparation of mesoporous Sb-, F-, and In-doped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cells. Adv Funct Mater 25(7):1074–1081

    CAS  Google Scholar 

  12. Huang K, Li Y, Yan L, Xing Y (2014) Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support. RSC Adv 4(19):9701–9708

    CAS  Google Scholar 

  13. Oh H-S, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6(6):3321–3328

    CAS  Google Scholar 

  14. Karimi F, Peppley BA (2017) Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis. Electrochim Acta 246:654–670

    CAS  Google Scholar 

  15. Kuttiyiel KA, Sasaki K, Chen W, Su D, Adzic RR (2014) Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. J Mater Chem A 2(3):591–594

    CAS  Google Scholar 

  16. Rudenja S, Pan J, Wallinder IO, Leygraf C, Kulu P (1999) Passivation and anodic oxidation of duplex TiN coating on stainless steel. J Electrochem Soc 146(11):4082–4086

    CAS  Google Scholar 

  17. Kakinuma K, Wakasugi Y, Uchida M, Kamino T, Uchida H, Watanabe M (2011) Electrochemical activity and durability of platinum catalysts supported on nanometer-size titanium nitride particles for polymer electrolyte fuel cells. Electrochemistry 79(5):399–403

    CAS  Google Scholar 

  18. Yang S, Tak YJ, Kim J, Soon A, Lee H (2017) Support effect in single-atom platinum catalyst for electrochemical oxygen reduction support effect in single-atom platinum catalyst for electrochemical oxygen reduction. ACS Catal 7(2):1301–1307

    CAS  Google Scholar 

  19. Zheng Y, Zhang J, Zhan H, Sun D, Dang D, Tian XL (2018) Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction. Electrochem Commun 91:31–35

    CAS  Google Scholar 

  20. Yang S, Kim J, Tak YJ, Soon A, Lee H (2016) Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed 55(6):2058–2062

    CAS  Google Scholar 

  21. Li G, Li K, Yang L, Chang J, Ma R, Wu Z, Xing W (2018) Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction. ACS Appl Mater Interfaces 10(44):38117–38124

    CAS  Google Scholar 

  22. Cheng J, Zhang H, Ma H, Zhong H, Zou Y (2009) Preparation of Ir0.4Ru0.6MoxOy for oxygen evolution by modified Adams’ fusion method. Int J Hydrogen Energy 34(16):6609–6661

    CAS  Google Scholar 

  23. Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2000) Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J Electrochem Soc 147(6):2018–2022

    CAS  Google Scholar 

  24. Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2001) IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J Appl Electrochem 31(11):1179–1183

    CAS  Google Scholar 

  25. Dong Y, Wu Y, Liu M, Li J (2013) Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction. ChemSusChem 6(10):2016–2021

    CAS  Google Scholar 

  26. Wei Z, Wang Y, Zhang J (2018) Electrochemical detection of NGF using a reduced graphene oxide-titanium nitride nanocomposite. Sci Rep 8(1):6929

    Google Scholar 

  27. Li C, Shi J, Zhu L, Zhao Y, Lu J, Xu L (2018) Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res 11(8):4302–4312

    CAS  Google Scholar 

  28. Liao Y, Xiang J, Yuan L, Hao Z, Gu J, Chen X, Huang Y (2018) Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl Mater Interfaces 10(44):37955–37962

    CAS  Google Scholar 

  29. Yang C, Wang H, Lu S, Wu C, Liu Y, Tan Q, Xiang Y (2015) Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries. Electrochim Acta 182:834–840

    CAS  Google Scholar 

  30. Oktay S, Kahraman Z, Urgen M, Kazmanli K (2015) XPS investigations of tribolayers formed on TiN and (Ti, Re)N coatings. Appl Surf Sci 328:255–261

    CAS  Google Scholar 

  31. Cui Z, Zu C, Zhou W, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28(32):6926–6931

    CAS  Google Scholar 

  32. Zhao D, Cui Z, Wang S, Qin J, Cao M (2016) VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J Mater Chem A 4(20):7914–7923

    CAS  Google Scholar 

  33. Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Arrigo R, Teschner D, Hashagen M (2016) The electronic structure of iridium and its oxides. Surf Interface Anal 48(5):261–273

    CAS  Google Scholar 

  34. Xiao H, Jia C, Liu B, Huang Y, Cai W, Li J, Huang Y (2019) Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J Am Chem Soc 141(7):3014–3023

    Google Scholar 

  35. Pfeifer V, Jones TE, Velasco Vélez JJ, Arrigo R, Piccinin S, Hävecker M, Schlögl R (2017) In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem Sci 8(3):2143–2149

    CAS  Google Scholar 

  36. Lee WH, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12(6):408–411

    CAS  Google Scholar 

  37. Kuo D-Y, Kawasaki JK, Nelson JN, Kloppenburg J, Hautier G, Shen KM, Suntivich J (2017) Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J Am Chem Soc 139(9):3473–3479

    CAS  Google Scholar 

  38. Mustain WE, Capuano CB, Maric R, Ayers KE, Zhao S, Danilovic N, Mustain WE (2015) Calculating the electrochemically active surface area of iridium oxide in operating proton exchange membrane electrolyzers. J Electrochem Soc 162(12):F1292–F1298

    Google Scholar 

  39. Lettenmeier P, Wang L, Golla-Schindler U, Gazdzicki P, Cañas NA, Handl M, Friedrich KA (2016) Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew Chem Int Ed 55(2):742–746

    CAS  Google Scholar 

  40. Hao C, Lv H, Mi C, Song Y, Ma J (2016) Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer. ACS Sustain Chem Eng 4(3):746–756

    CAS  Google Scholar 

  41. Han B, Risch M, Belden S, Lee S, Bayer D, Mutoro E, Yang SH (2018) Screening oxide support materials for OER catalysts in acid. J Electrochem Soc 165(10):F813–F820

    CAS  Google Scholar 

  42. Rai S, Ikram A, Sahai S, Dass S, Shrivastav R, Satsangi VR (2017) CNT based photoelectrodes for PEC generation of hydrogen: a review. Int J Hydrogen Energy 42(7):3994–4006

    CAS  Google Scholar 

  43. Guan J, Li D, Si R, Miao S, Zhang F, Li C (2017) Synthesis and demonstration of subnanometric iridium oxide as highly efficient and robust water oxidation catalyst. ACS Catal 7(9):5983–5986

    CAS  Google Scholar 

  44. Zhou X, Yang J, Li C (2012) Theoretical study of structure, stability, and the hydrolysis reactions of small iridium oxide nanoclusters. J Phys Chem A 116(40):9985–9995

    CAS  Google Scholar 

  45. Ping Y, Nielsen RJ, Goddard WA (2017) The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2(110) surface. J Am Chem Soc 139(1):149–155

    CAS  Google Scholar 

  46. Fuentes RE, Colon-Mercado HR, Martinez-Rodriguez MJ (2013) Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process. J Electrochem Soc 161(1):F77–F82

    Google Scholar 

  47. Godínez-Salomón F, Albiter L, Alia SM, Pivovar BS, Camacho-Forero LE, Balbuena PB, Rhodes CP (2018) Self-supported hydrous iridium–nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catal 8(11):10498–10520

    Google Scholar 

  48. Fu L, Zeng X, Cheng G, Luo W (2018) IrCo nanodendrite as an efficient bifunctional electrocatalyst for overall water splitting under acidic conditions. ACS Appl Mater Interfaces 10(30):24993–24998

    CAS  Google Scholar 

  49. Jiang B, Wang T, Cheng Y, Liao F, Wu K, Shao M (2018) Ir/g-C3N4/nitrogen-doped graphene nanocomposites as bifunctional electrocatalysts for overall water splitting in acidic electrolytes. ACS Appl Mater Interfaces 10(45):39161–39167

    CAS  Google Scholar 

  50. Nong HN, Oh HS, Reier T, Willinger E, Willinger MG, Petkov V, Strasser P (2015) Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54(10):297–2979

    Google Scholar 

  51. Liang X, Shi L, Liu Y, Chen H, Si R, Yan W, Zou X (2019) Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew Chem Int Ed 58(23):7631–7635

    CAS  Google Scholar 

  52. Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1:2075–2081

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC No. 21606075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Mai, W., Li, J. et al. Highly scattered Ir oxides on TiN as an efficient oxygen evolution reaction electrocatalyst in acidic media. J Mater Sci 55, 3507–3520 (2020). https://doi.org/10.1007/s10853-019-04201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04201-4