Skip to main content

Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications

Abstract

In this review, recent progress in the mechanical, thermal and interfacial properties of graphene/CNT multiphase polymer composites is examined. Progress in the mechanical and thermal properties of CNT (1D) and graphene (2D) nanostructure materials is also reviewed and compared. Furthermore, this review highlights the improvements in the mechanical, thermal and interfacial properties of two- and three-phase composites, owing to the addition of graphene/CNT. In particular, analysis of several notable papers on hybrid composites (graphene/CNT) provides an intensive review of synergetic effects on the overall properties of the corresponding composites. This holistic review describes an improved interface between fibers and a nanofiller-reinforced matrix. Although the presence of nanofillers even at low loadings confers an overall improvement in composite properties, the exact ratios of individual fillers and combined forms remain to be discussed in depth. Finally, potential applications, current challenges and future perspectives for use of these multiphase composites are discussed with regard to their extraordinary capabilities and promising developments in graphene/CNT family-based composite materials.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Abbreviations

0D:

Zero-dimensional

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

AFM:

Atomic force microscopy

APS:

Aminopropyltriethoxysilane

BADCy:

Bisphenol A dicyanate ester

BwGO:

Base-washed graphene oxide

CFs:

Carbon fibers

CNTs:

Carbon nanotubes

CNFs:

Carbon nanofibers

CFRPs:

Carbon-fiber-reinforced polymer composites

CVD:

Chemical vapor deposition

DMA:

Dynamic mechanical analysis

DGEBA:

Diglycidyl ether of bisphenol A

DCB:

Double cantilever beam

EPD:

Electrophoretic deposition

EMA:

Ethylene methyl acrylate

FG:

Functionalized graphene

FGO:

Functionalized graphene oxide

FEA:

Finite element analysis

f-CNTs:

Functionalized carbon nanotubes

f-MWCNT:

Functionalized multi-walled carbon nanotube

GNS:

Graphene nanosheet

GNWs:

Graphene nanowalls

GRPs:

Glass-reinforced fiber composites

GFs:

Glass fibers

GO:

Graphene oxide

GNPs:

Graphene nanoplatelets

ILSS:

Interlaminar shear strength

IFSS:

Interfacial shear strength

LCPU:

Liquid crystal perylene bisimides polyurethane

MA:

Maleic anhydride

MPSR:

Methylphenyl silicone

MD:

Molecular dynamics

MWCNT:

Multi-walled carbon nanotube

NS:

Nano-structured

OPBI:

Poly[2,2′-(p-oxydiphenylene)-5-5′-bibenzimidazole]

PC:

Polycarbonate

PVA:

Poly(vinyl alcohol)

PAS:

Poly(4-aminostyrene)

PEI:

Polyetherimide

PES:

Poly(ethylene succinate)

PMMA:

Poly(methyl methacrylate)

PET:

Polyethylene terephthalate

PU:

Polyurethane

PEEK:

Polyether ether ketone

PVB:

Poly(vinyl butyral)

PBT:

Poly-p-phenylene benzobithiazole

PP:

Polypropylene

PA:

Polyamide

PLA:

Polylactic acid

PBT:

Poly-p-phenylene benzobithiazole

PI:

Polyimide

PDMS:

Polydimethylsiloxane

rGO:

Reduced graphene oxide

SBS:

Short-beam strength

SGF:

Short glass fiber

SCF:

Short carbon fiber

SEM:

Scanning electron microscopy

S-W:

Stone–Wales

SWCNT:

Single-walled carbon nanotube

T g :

Glass transition temperature

T onset :

Onset decomposition temperature

UTS:

Ultimate tensile strength

VARTM:

Vacuum-assisted resin transfer molding

xGNP:

Exfoliated graphene

References

  1. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803

    CAS  Google Scholar 

  2. Phaahlamohlaka TN, Kumi DO, Dlamini MW, Jewell LL, Coville NJ (2016) Ruthenium nanoparticles encapsulated inside porous hollow carbon spheres: a novel catalyst for Fischer-Tropsch synthesis. Catal Today 275:76–83

    CAS  Google Scholar 

  3. Budiman F, Bashirom N, Tan WK, Razak KA, Matsuda A, Lockman Z (2016) Rapid nanosheets and nanowires formation by thermal oxidation of iron in water vapour and their applications as Cr(VI) adsorbent. Appl Surf Sci 380:172–177

    CAS  Google Scholar 

  4. Wang K, Wang J, Fan J, Lotya M, O’Neill A, Fox D et al (2013) Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7(10):9260–9267

    CAS  Google Scholar 

  5. Yuan K, Che R, Cao Q, Sun Z, Yue Q, Deng Y (2015) Designed fabrication and characterization of three-dimensionally ordered arrays of core–shell magnetic mesoporous carbon microspheres. ACS Appl Mater Interfaces 7(9):5312–5319

    CAS  Google Scholar 

  6. Han DJ, Jung JH, Choi JS, Kim YT, Seo TS (2013) Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core–shell structure. Lab Chip 13(20):4006–4010

    CAS  Google Scholar 

  7. Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM et al (2011) Covalent bulk functionalization of graphene. Nat Chem 3(4):279

    CAS  Google Scholar 

  8. Schirowski M, Abellán G, Nuin E, Pampel J, Dolle C, Wedler V et al (2018) Fundamental insights into the reductive covalent cross-linking of single-walled carbon nanotubes. J Am Chem Soc 140(9):3352–3360

    CAS  Google Scholar 

  9. Bose S, Das A, Basu S, Drzal LT (2017) Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene–epoxy nanocomposite. Polym Compos 39(9):3119–3128

    Google Scholar 

  10. Uddin ME, Layek RK, Kim HY, Kim NH, Hui D, Lee JH (2016) Preparation and enhanced mechanical properties of non-covalently-functionalized graphene oxide/cellulose acetate nanocomposites. Compos B Eng 90:223–231

    CAS  Google Scholar 

  11. Moayeri A, Ajji A (2015) Fabrication of polyaniline/poly (ethylene oxide)/non-covalently functionalized graphene nanofibers via electrospinning. Synth Met 200:7–15

    CAS  Google Scholar 

  12. Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4(6):2911–2934

    CAS  Google Scholar 

  13. Kim H, Oh E, Hahn HT, Lee K-H (2015) Enhancement of fracture toughness of hierarchical carbon fiber composites via improved adhesion between carbon nanotubes and carbon fibers. Compos A Appl Sci Manuf 71:72–83

    CAS  Google Scholar 

  14. Saba N, Jawaid M (2018) A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J Ind Eng Chem 67:1–11

    CAS  Google Scholar 

  15. Mittal G, Rhee KY, Mišković-Stanković V, Hui D (2017) Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos B Eng 138:122–139

    Google Scholar 

  16. Ranjbartoreh AR, Wang B, Shen X, Wang G (2011) Advanced mechanical properties of graphene paper. J Appl Phys 109(1):014306

    Google Scholar 

  17. Wang T, Quinn MD, Notley SM (2018) Enhanced electrical, mechanical and thermal properties by exfoliating graphene platelets of larger lateral dimensions. Carbon 129:191–198

    CAS  Google Scholar 

  18. Yao X, Gao X, Jiang J, Xu C, Deng C, Wang J (2018) Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos B Eng 132:170–177

    CAS  Google Scholar 

  19. Hwang Y, Kim M, Kim J (2013) Improvement of the mechanical properties and thermal conductivity of poly (ether-ether-ketone) with the addition of graphene oxide-carbon nanotube hybrid fillers. Compos A Appl Sci Manuf 55:195–202

    CAS  Google Scholar 

  20. Imtiaz S, Siddiq M, Kausar A, Muntha ST, Ambreen J, Bibi I (2018) A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites. Chin J Polym Sci 36(4):445–461

    CAS  Google Scholar 

  21. Salom C, Prolongo M, Toribio A, Martínez-Martínez A, de Cárcer IA, Prolongo S (2018) Mechanical properties and adhesive behavior of epoxy-graphene nanocomposites. Int J Adhes Adhes 84:119–125

    CAS  Google Scholar 

  22. Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    CAS  Google Scholar 

  23. Dresselhaus M, Dresselhaus G, Charlier J-C, Hernandez E (1823) Electronic, thermal and mechanical properties of carbon nanotubes. Philos Trans R Soc Lond A Math Phys Eng Sci 2004(362):2065–2098

    Google Scholar 

  24. Isaza MCA, Herrera Ramírez J, Ledezma Sillas J, Meza J (2018) Dispersion and alignment quantification of carbon nanotubes in a polyvinyl alcohol matrix. J Compos Mater 52(12):1617–1626

    Google Scholar 

  25. Kim S, Lee WI, Park CH (2016) Assessment of carbon nanotube dispersion and mechanical property of epoxy nanocomposites by curing reaction heat measurement. J Reinf Plast Compos 35(1):71–80

    CAS  Google Scholar 

  26. Li Y, Yang T, Yu T, Zheng L, Liao K (2011) Synergistic effect of hybrid carbon nantube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. J Mater Chem 21(29):10844–10851

    CAS  Google Scholar 

  27. Zhang C, Ren L, Wang X, Liu T (2010) Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J Phys Chem C 114(26):11435–11440

    CAS  Google Scholar 

  28. Min C, Liu D, Shen C, Zhang Q, Song H, Li S et al (2018) Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribol Int 117:217–224

    CAS  Google Scholar 

  29. Puglia D, Al-Maadeed MAS, Kenny JM, Thomas S (2017) Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of ‘micro’ and ‘nano’ scale. Mater Sci Eng R Rep 116:1–29

    Google Scholar 

  30. Li Y, Umer R, Isakovic A, Samad YA, Zheng L, Liao K (2013) Synergistic toughening of epoxy with carbon nanotubes and graphene oxide for improved long-term performance. RSC Adv 3(23):8849–8856

    CAS  Google Scholar 

  31. Nguyen-Tran H-D, Hoang V-T, Do V-T, Chun D-M, Yum Y-J (2018) Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials 11(3):429

    Google Scholar 

  32. Reis V, Opelt C, Cândido G, Rezende M, Donadon M (2018) Effect of fiber orientation on the compressive response of plain weave carbon fiber/epoxy composites submitted to high strain rates. Compos Struct 203:952–959

    Google Scholar 

  33. Li T, Li M, Gu Y, Wang S, Li Q, Zhang Z (2018) Mechanical enhancement effect of the interlayer hybrid CNT film/carbon fiber/epoxy composite. Compos Sci Technol 166:176–182

    CAS  Google Scholar 

  34. Yang B, Tang X, Yang K, Xuan FZ, Xiang Y, He L et al (2018) Temperature effect on graphene-filled interface between glass–carbon hybrid fibers and epoxy resin characterized by fiber-bundle pull-out test. J Appl Polym Sci 135(19):46263

    Google Scholar 

  35. Šupová M, Martynková GS, Barabaszová K (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3(1):1–25

    Google Scholar 

  36. Hong S-K, Kim D, Lee S, Kim B-W, Theilmann P, Park S-H (2015) Enhanced thermal and mechanical properties of carbon nanotube composites through the use of functionalized CNT-reactive polymer linkages and three-roll milling. Compos Part A Appl Sci Manuf 77:142–146

    CAS  Google Scholar 

  37. Hameed A, Islam M, Ahmad I, Mahmood N, Saeed S, Javed H (2015) Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polym Compos 36(10):1891–1898

    CAS  Google Scholar 

  38. Chandra Y, Scarpa F, Adhikari S, Zhang J, Flores ES, Peng H-X (2016) Pullout strength of graphene and carbon nanotube/epoxy composites. Compos B Eng 102:1–8

    CAS  Google Scholar 

  39. Ji X, Xu Y, Zhang W, Cui L, Liu J (2016) Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos A Appl Sci Manuf 87:29–45

    CAS  Google Scholar 

  40. Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859

    CAS  Google Scholar 

  41. Punetha VD, Rana S, Yoo HJ, Chaurasia A, McLeskey JT Jr, Ramasamy MS et al (2017) Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog Polym Sci 67:1–47

    CAS  Google Scholar 

  42. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    CAS  Google Scholar 

  43. Treacy MJ, Ebbesen T, Gibson J (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678

    CAS  Google Scholar 

  44. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975

    CAS  Google Scholar 

  45. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    CAS  Google Scholar 

  46. Lukić B, Seo JW, Bacsa RR, Delpeux S, Béguin F, Bister G et al (2005) Catalytically grown carbon nanotubes of small diameter have a high Young’s modulus. Nano Lett 5(10):2074–2077

    Google Scholar 

  47. Troiani H, Miki-Yoshida M, Camacho-Bragado G, Marques M, Rubio A, Ascencio J et al (2003) Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level. Nano Lett 3(6):751–755

    CAS  Google Scholar 

  48. Motta M, Li Y-L, Kinloch I, Windle A (2005) Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett 5(8):1529–1533

    CAS  Google Scholar 

  49. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58(20):14013–14019

    CAS  Google Scholar 

  50. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514

    CAS  Google Scholar 

  51. Lu J (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300

    CAS  Google Scholar 

  52. Hernandez E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502–4505

    CAS  Google Scholar 

  53. Kelkar AD, Chandekar GS, Mohan R (2008) Prediction of material properties of single walled carbon nanotube using MD simulations. In: Nanotechnology, 2008 NANO ‘08 8th IEEE conference on 2008. https://doi.org/10.1109/nano.2008.114

  54. Zang J-L, Yuan Q, Wang F-C, Zhao Y-P (2009) A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Comput Mater Sci 46(3):621–625

    CAS  Google Scholar 

  55. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    CAS  Google Scholar 

  56. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    CAS  Google Scholar 

  57. Zandiatashbar A, Lee G-H, An SJ, Lee S, Mathew N, Terrones M et al (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3186

    Google Scholar 

  58. Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330(6006):946–948

    CAS  Google Scholar 

  59. Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M (2012) The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat Mater 11(9):759

    CAS  Google Scholar 

  60. Wang C, Peng Q, Wu J, He X, Tong L, Luo Q et al (2014) Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading. Carbon 80:279–289

    CAS  Google Scholar 

  61. Rasool HI, Ophus C, Klug WS, Zettl A, Gimzewski JK (2013) Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Commun 4:2811

    Google Scholar 

  62. Ruiz-Vargas CS, Zhuang HL, Huang PY, Van Der Zande AM, Garg S, McEuen PL et al (2011) Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett 11(6):2259–2263

    CAS  Google Scholar 

  63. Khanafer K, Vafai K (2017) Analysis of the anomalies in graphene thermal properties. Int J Heat Mass Transf 104:328–336

    CAS  Google Scholar 

  64. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    CAS  Google Scholar 

  65. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    CAS  Google Scholar 

  66. Faugeras C, Faugeras B, Orlita M, Potemski M, Nair RR, Geim A (2010) Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 4(4):1889–1892

    CAS  Google Scholar 

  67. Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651

    CAS  Google Scholar 

  68. Tonelli FM, Goulart VA, Gomes KN, Ladeira MS, Santos AK, Lorençon E et al (2015) Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine 10(15):2423–2450

    CAS  Google Scholar 

  69. Kumar A, Sharma K, Dixit AR (2019) A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. Mol Simul. https://doi.org/10.1080/08927022.2019.1680844

    Article  Google Scholar 

  70. Guo D, Xie G, Luo J (2013) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47(1):013001

    Google Scholar 

  71. Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54(8):5992–6026. https://doi.org/10.1007/s10853-018-03244-3

    Article  CAS  Google Scholar 

  72. Wu Y, Huang M, Wang F, Huang XH, Rosenblatt S, Huang L et al (2008) Determination of the Young’s modulus of structurally defined carbon nanotubes. Nano Lett 8(12):4158–4161

    CAS  Google Scholar 

  73. Wei X, Chen Q, Peng L-M, Cui R, Li Y (2009) Tensile loading of double-walled and triple-walled carbon nanotubes and their mechanical properties. J Phys Chem C 113(39):17002–17005

    CAS  Google Scholar 

  74. Yu M-F, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555

    CAS  Google Scholar 

  75. Xu W, Chen Y, Zhan H, Wang JN (2016) High-strength carbon nanotube film from improving alignment and densification. Nano Lett 16(2):946–952

    CAS  Google Scholar 

  76. Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564

    CAS  Google Scholar 

  77. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8(7):2045–2049

    Google Scholar 

  78. Sankar PG, Kumar K (2011) Mechanical and electrical properties of single walled carbon nanotubes: a computational study. Eur J Sci Res 60(3):342–358

    Google Scholar 

  79. Li J-L, Kudin KN, McAllister MJ, Prudhomme RK, Aksay IA, Car R (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96(17):176101

    Google Scholar 

  80. Yang L, Greenfeld I, Wagner HD (2016) Toughness of carbon nanotubes conforms to classic fracture mechanics. Sci Adv 2(2):e1500969

    Google Scholar 

  81. Lee C, Wei X, Li Q, Carpick R, Kysar JW, Hone J (2009) Elastic and frictional properties of graphene. Phys Status Solidi B 246(11–12):2562–2567

    CAS  Google Scholar 

  82. Dürkop T, Getty S, Cobas E, Fuhrer M (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4(1):35–39

    Google Scholar 

  83. Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503

    Google Scholar 

  84. Wang S, Ang PK, Wang Z, Tang ALL, Thong JT, Loh KP (2009) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10(1):92–98

    Google Scholar 

  85. Mahanta NK, Abramson AR (2012) Thermal conductivity of graphene and graphene oxide nanoplatelets. In: 2012 13th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm). IEEE, pp 1–6

  86. Lee J-U, Yoon D, Kim H, Lee SW, Cheong H (2011) Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys Rev B 83(8):081419

    Google Scholar 

  87. Bekyarova E, Itkis ME, Cabrera N, Zhao B, Yu A, Gao J et al (2005) Electronic properties of single-walled carbon nanotube networks. J Am Chem Soc 127(16):5990–5995

    CAS  Google Scholar 

  88. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G et al (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457

    CAS  Google Scholar 

  89. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1(5):403–408

    CAS  Google Scholar 

  90. Ong YT, Ahmad AL, Zein SHS, Tan SH (2010) A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz J Chem Eng 27(2):227–242

    CAS  Google Scholar 

  91. Ismail IM (1987) Structure and active surface area of carbon fibers. Carbon 25(5):653–662

    CAS  Google Scholar 

  92. Seresht RJ, Jahanshahi M, Rashidi A, Ghoreyshi AA (2013) Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure. Appl Surf Sci 276:672–681

    Google Scholar 

  93. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404

    CAS  Google Scholar 

  94. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    CAS  Google Scholar 

  95. Gkikas G, Barkoula N-M, Paipetis A (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos B Eng 43(6):2697–2705

    CAS  Google Scholar 

  96. Jamal-Omidi M, ShayanMehr M (2019) Improving the dispersion of SWNT in epoxy resin through a simple Multi-Stage method. J King Saud Univ Sci 31(2):202–208

    Google Scholar 

  97. Ogasawara T, Tsuda T, Takeda N (2011) Stress–strain behavior of multi-walled carbon nanotube/PEEK composites. Compos Sci Technol 71(2):73–78

    CAS  Google Scholar 

  98. Yashiro S, Sakaida Y, Shimamura Y, Inoue Y (2016) Evaluation of interfacial shear stress between multi-walled carbon nanotubes and epoxy based on strain distribution measurement using Raman spectroscopy. Compos A Appl Sci Manuf 85:192–198

    CAS  Google Scholar 

  99. Zabihi O, Ahmadi M, Naebe M (2015) One-pot synthesis of aminated multi-walled carbon nanotube using thiol-ene click chemistry for improvement of epoxy nanocomposites properties. RSC Adv 5(119):98692–98699

    CAS  Google Scholar 

  100. Zhou Y, Pervin F, Lewis L, Jeelani S (2008) Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater Sci Eng A 475(1–2):157–165

    Google Scholar 

  101. Omidi M, Milani AS, Seethaler RJ, Arasteh R (2010) Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48(11):3218–3228

    CAS  Google Scholar 

  102. David OB, Banks-Sills L, Aboudi J, Fourman V, Eliasi R, Simhi T et al (2014) Evaluation of the mechanical properties of PMMA reinforced with carbon nanotubes-experiments and modeling. Exp Mech 54(2):175–186

    Google Scholar 

  103. Duncan RK, Chen XG, Bult J, Brinson L, Schadler L (2010) Measurement of the critical aspect ratio and interfacial shear strength in MWNT/polymer composites. Compos Sci Technol 70(4):599–605

    CAS  Google Scholar 

  104. Zu M, Li Q, Zhu Y, Dey M, Wang G, Lu W et al (2012) The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon 50(3):1271–1279

    CAS  Google Scholar 

  105. Srivastava RK, Vemuru VSM, Zeng Y, Vajtai R, Nagarajaiah S, Ajayan PM et al (2011) The strain sensing and thermal–mechanical behavior of flexible multi-walled carbon nanotube/polystyrene composite films. Carbon 49(12):3928–3936

    CAS  Google Scholar 

  106. Jin F-L, Ma C-J, Park S-J (2011) Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A 528(29–30):8517–8522

    CAS  Google Scholar 

  107. Bisht A, Dasgupta K, Lahiri D (2018) Effect of graphene and CNT reinforcement on mechanical and thermomechanical behavior of epoxy—A comparative study. J Appl Polym Sci 135(14):46101

    Google Scholar 

  108. Jangam S, Raja S, Reddy KH (2018) Effect of multiwalled carbon nanotube alignment on the tensile fatigue behavior of nanocomposites. J Compos Mater 52(17):2365–2374

    CAS  Google Scholar 

  109. Khan SU, Pothnis JR, Kim J-K (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos A Appl Sci Manuf 49:26–34

    CAS  Google Scholar 

  110. Singh PK, Sharma K, Kumar A, Shukla M (2017) Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: a molecular dynamics approach. J Compos Mater 51(5):671–680

    CAS  Google Scholar 

  111. Gu H, Tadakamalla S, Zhang X, Huang Y, Jiang Y, Colorado HA et al (2013) Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes. J Mater Chem C 1(4):729–743

    CAS  Google Scholar 

  112. Cui L-J, Wang Y-B, Xiu W-J, Wang W-Y, Xu L-H, Xu X-B et al (2013) Effect of functionalization of multi-walled carbon nanotube on the curing behavior and mechanical property of multi-walled carbon nanotube/epoxy composites. Mater Des 49:279–284

    CAS  Google Scholar 

  113. Mallakpour S, Zadehnazari A (2016) Synthesis, morphology investigation and thermal mechanical properties of dopamine-functionalized multi-walled carbon nanotube/poly (amide-imide) composites. React Funct Polym 106:112–119

    CAS  Google Scholar 

  114. Wernik J, Meguid S (2014) On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater Des 59:19–32

    CAS  Google Scholar 

  115. Guo P, Song H, Chen X (2009) Interfacial properties and microstructure of multiwalled carbon nanotubes/epoxy composites. Mater Sci Eng A 517(1–2):17–23

    Google Scholar 

  116. Cha J, Jun GH, Park JK, Kim JC, Ryu HJ, Hong SH (2017) Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Compos B Eng 129:169–179

    CAS  Google Scholar 

  117. Wang P-H, Sarkar S, Gulgunje P, Verghese N, Kumar S (2018) Fracture mechanism of high impact strength polypropylene containing carbon nanotubes. Polymer 151:287–298

    CAS  Google Scholar 

  118. Rafiee R, Moghadam RM (2012) Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling. Comput Mater Sci 63:261–268

    CAS  Google Scholar 

  119. Sun L, Gibson RF, Gordaninejad F, Suhr J (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69(14):2392–2409

    CAS  Google Scholar 

  120. Laurenzi S, Pastore R, Giannini G, Marchetti M (2013) Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy. Compos Struct 99:62–68

    Google Scholar 

  121. Ghoshal S, Wang P-H, Gulgunje P, Verghese N, Kumar S (2016) High impact strength polypropylene containing carbon nanotubes. Polymer 100:259–274

    CAS  Google Scholar 

  122. Zhou Y, Lei L, Yang B, Li J, Ren J (2018) Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Test 68:34–38

    CAS  Google Scholar 

  123. Dai W, Yu J, Wang Y, Song Y, Bai H, Nishimura K et al (2014) Enhanced thermal and mechanical properties of polyimide/graphene composites. Macromol Res 22(9):983–989

    CAS  Google Scholar 

  124. Shen X, Wang Z, Ying W, Liu X, He Y, Zheng Q et al (2018) Three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater Horiz 5:275–284

    CAS  Google Scholar 

  125. Bhasin M, Wu S, Ladani RB, Kinloch AJ, Wang CH, Mouritz AP (2018) Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplatelets. Int J Fatigue 113:88–97

    CAS  Google Scholar 

  126. Shokrieh M, Ghoreishi S, Esmkhani M, Zhao Z (2014) Effects of graphene nanoplatelets and graphene nanosheets on fracture toughness of epoxy nanocomposites. Fatigue Fract Eng Mater Struct 37(10):1116–1123

    CAS  Google Scholar 

  127. Oyarzabal A, Cristiano-Tassi A, Laredo E, Newman D, Bello A, Etxeberría A et al (2017) Dielectric, mechanical and transport properties of bisphenol A polycarbonate/graphene nanocomposites prepared by melt blending. J Appl Polym Sci 134(13):44654–44667

    Google Scholar 

  128. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21(12):4222–4227

    CAS  Google Scholar 

  129. Wang Y, Shi Z, Fang J, Xu H, Ma X, Yin J (2011) Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites. J Mater Chem 21(2):505–512

    CAS  Google Scholar 

  130. Altan M, Uysal A (2018) An experimental study on mechanical behavior of nanographene/epoxy nanocomposites. Adv Polym Technol 37(4):1061–1066

    CAS  Google Scholar 

  131. Wajid AS, Ahmed HT, Das S, Irin F, Jankowski AF, Green MJ (2013) High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol Mater Eng 298(3):339–347

    CAS  Google Scholar 

  132. Qin Z, Taylor M, Hwang M, Bertoldi K, Buehler MJ (2014) Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics. Nano Lett 14(11):6520–6525

    CAS  Google Scholar 

  133. Yadav A, Kumar A, Sharma K, Shukla MK (2019) Investigating the effects of amine functionalized graphene on the mechanical properties of epoxy nanocomposites. Mater Today Proc 11:837–842

    CAS  Google Scholar 

  134. Yadav A, Kumar A, Singh PK, Sharma K (2018) Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr Ferroelectr 186(1):106–114

    CAS  Google Scholar 

  135. Anwar Z, Kausar A, Khan LA, Muhammad B (2016) Modified graphene nanoplatelet and epoxy/block copolymer-based nanocomposite: physical characteristic and EMI shielding studies. Nanocomposites 2(3):141–151

    CAS  Google Scholar 

  136. Wang X, Xing W, Zhang P, Song L, Yang H, Hu Y (2012) Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol 72(6):737–743

    CAS  Google Scholar 

  137. Yao H, Hawkins SA, Sue H-J (2017) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168

    CAS  Google Scholar 

  138. Wan Y-J, Tang L-C, Gong L-X, Yan D, Li Y-B, Wu L-B et al (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480

    CAS  Google Scholar 

  139. Ionita M, Pandele AM, Crica L, Pilan L (2014) Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Compos B Eng 59:133–139

    CAS  Google Scholar 

  140. Aradhana R, Mohanty S, Nayak SK (2018) Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer 141:109–123

    CAS  Google Scholar 

  141. Zeng C, Lu S, Xiao X, Gao J, Pan L, He Z et al (2015) Enhanced thermal and mechanical properties of epoxy composites by mixing noncovalently functionalized graphene sheets. Polym Bull 72(3):453–472

    CAS  Google Scholar 

  142. Choudhury A (2014) Preparation and characterization of nanocomposites of poly-p-phenylene benzobisthiazole with graphene nanosheets. RSC Adv 4(17):8856–8866

    CAS  Google Scholar 

  143. Kang W-S, Rhee KY, Park S-J (2017) Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites. Compos B Eng 114:175–183

    CAS  Google Scholar 

  144. Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99

    CAS  Google Scholar 

  145. Sharma B, Shekhar S, Gautam S, Sarkar A, Jain P (2018) Nanomechanical analysis of chemically reduced graphene oxide reinforced poly (vinyl alcohol) nanocomposite thin films. Polym Test 70:458–466

    CAS  Google Scholar 

  146. Huang N-J, Zang J, Zhang G-D, Guan L-Z, Li S-N, Zhao L et al (2017) Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons. RSC Adv 7(36):22045–22053

    CAS  Google Scholar 

  147. Chen Y, Li D, Yang W, Xiao C, Wei M (2018) Effects of different amine-functionalized graphene on the mechanical, thermal, and tribological properties of polyimide nanocomposites synthesized by in situ polymerization. Polymer 140:56–72

    CAS  Google Scholar 

  148. Hoepfner JC, Loos MR, Pezzin SH (2018) Evaluation of thermomechanical properties of polyvinyl butyral nanocomposites reinforced with graphene nanoplatelets synthesized by in situ polymerization. J Appl Polym Sci 135(17):46157

    Google Scholar 

  149. Mukherjee M, Mukherjee S, Kumar R, Shunmugam R (2017) Improved thermal and mechanical properties of polynorbornene upon covalent attachment with graphene sheets. Polymer 123:321–333

    CAS  Google Scholar 

  150. Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP et al (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618

    CAS  Google Scholar 

  151. Montazeri A, Khavandi A, Javadpour J, Tcharkhtchi A (2010) Viscoelastic properties of multi-walled carbon nanotube/epoxy composites using two different curing cycles. Mater Des 31(7):3383–3388

    CAS  Google Scholar 

  152. Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH (2016) Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater Des 95:1–8

    CAS  Google Scholar 

  153. Montazeri A, Javadpour J, Khavandi A, Tcharkhtchi A, Mohajeri A (2010) Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 31(9):4202–4208

    CAS  Google Scholar 

  154. Mordina B, Tiwari R (2016) Thermal and mechanical behavior of poly (vinyl butyral)-modified novolac epoxy/multiwalled carbon nanotube nanocomposites. J Appl Polym Sci 133(17):43333–43344

    Google Scholar 

  155. Zhang LY, Zhang YF (2016) In situ fast polymerization of graphene nanosheets-filled poly (methyl methacrylate) nanocomposites. J Appl Polym Sci 133(19):43423

    Google Scholar 

  156. Milani MA, González D, Quijada R, Basso NR, Cerrada ML, Azambuja DS et al (2013) Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol 84:1–7

    CAS  Google Scholar 

  157. Chakraborty G, Gupta A, Pugazhenthi G, Katiyar V (2018) Facile dispersion of exfoliated graphene/PLA nanocomposites via in situ polycondensation with a melt extrusion process and its rheological studies. J Appl Polym Sci 135(33):46476

    Google Scholar 

  158. Zhang S, Liu P, Zhao X, Xu J (2017) Preparation of poly (vinyl alcohol)-grafted graphene oxide/poly (vinyl alcohol) nanocomposites via in situ low-temperature emulsion polymerization and their thermal and mechanical characterization. Appl Surf Sci 396:1098–1107

    CAS  Google Scholar 

  159. Bian Q, Tian H, Wang Y, Liu Q, Ge X, Rajulu AV et al (2015) Effect of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films. Polym Sci Ser A 57(6):836–844

    CAS  Google Scholar 

  160. Bari P, Khan S, Njuguna J, Mishra S (2017) Elaboration of properties of graphene oxide reinforced epoxy nanocomposites. Int J Plast Technol 21(1):194–208

    CAS  Google Scholar 

  161. Abdollahi R, Taghizadeh MT, Savani S (2018) Thermal and mechanical properties of graphene oxide nanocomposite hydrogel based on poly (acrylic acid) grafted onto amylose. Polym Degrad Stab 147:151–158

    CAS  Google Scholar 

  162. Moosaei R, Sharif M, Ramezannezhad A (2017) Enhancement of tensile, electrical and thermal properties of epoxy nanocomposites through chemical hybridization of polypyrrole and graphene oxide. Polym Test 60:173–186

    CAS  Google Scholar 

  163. Haeri S, Asghari M, Ramezanzadeh B (2017) Enhancement of the mechanical properties of an epoxy composite through inclusion of graphene oxide nanosheets functionalized with silica nanoparticles through one and two steps sol-gel routes. Prog Org Coat 111:1–12

    CAS  Google Scholar 

  164. Chhetri S, Adak NC, Samanta P, Mallisetty PK, Murmu NC, Kuila T (2018) Interface engineering for the improvement of mechanical and thermal properties of covalent functionalized graphene/epoxy composites. J Appl Polym Sci 135(15):46124

    Google Scholar 

  165. Jahandideh S, Shirazi MJS, Tavakoli M (2017) Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites. Fibers Polym 18(10):1995–2004

    CAS  Google Scholar 

  166. Zhao J, Wang X, Zhou W, Zhi E, Zhang W, Ji J (2013) Graphene-reinforced biodegradable poly (ethylene succinate) nanocomposites prepared by in situ polymerization. J Appl Polym Sci 130(5):3212–3220

    CAS  Google Scholar 

  167. Nam K-H, Yu J, You N-H, Han H, Ku B-C (2017) Synergistic toughening of polymer nanocomposites by hydrogen-bond assisted three-dimensional network of functionalized graphene oxide and carbon nanotubes. Compos Sci Technol 149:228–234

    CAS  Google Scholar 

  168. Ren PG, Yan DX, Chen T, Zeng BQ, Li ZM (2011) Improved properties of highly oriented graphene/polymer nanocomposites. J Appl Polym Sci 121(6):3167–3174

    CAS  Google Scholar 

  169. Moosa AA, Ahmad Ramazani SA, Kubba FAK, Raad M (2017) Synergetic effects of graphene and nonfunctionalized carbon nanotubes hybrid reinforced epoxy matrix on mechanical, thermal and wettability properties of nanocomposites. Am J Mater Sci 7(1):1–11. https://doi.org/10.5923/j.materials.20170701.01

    Article  Google Scholar 

  170. Wang P-N, Hsieh T-H, Chiang C-L, Shen M-Y (2015) Synergetic effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites. J Nanomater 2015:7

    Google Scholar 

  171. Kim M-S, Yan J, Kang K-M, Joo K-H, Kang Y-J, Ahn S-H (2013) Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. Int J Precis Eng Manuf 14(6):1087–1092

    Google Scholar 

  172. Li W, Dichiara A, Bai J (2013) Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos Sci Technol 74:221–227

    CAS  Google Scholar 

  173. Wu J, Yu K, Qian K, Jia Y (2015) One step fabrication of multi-walled carbon nanotubes/graphene nanoplatelets hybrid materials with excellent mechanical property. Fibers Polym 16(7):1540–1546

    CAS  Google Scholar 

  174. Chatterjee S, Nafezarefi F, Tai N, Schlagenhauf L, Nüesch F, Chu B (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50(15):5380–5386

    CAS  Google Scholar 

  175. Prolongo S, Moriche R, Ureña A, Flórez S, Gaztelumendi I, Arribas C et al (2018) Carbon nanotubes and graphene into thermosetting composites: synergy and combined effect. J Appl Polym Sci 28:46475

    Google Scholar 

  176. Yu J, Choi HK, Kim HS, Kim SY (2016) Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect. Compos A Appl Sci Manuf 88:79–85

    CAS  Google Scholar 

  177. Bagotia N, Choudhary V, Sharma D (2019) Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos B Eng 159:378–388

    CAS  Google Scholar 

  178. Montes S, Carrasco PM, Ruiz V, Cabañero G, Grande HJ, Labidi J et al (2015) Synergistic reinforcement of poly (vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Compos Sci Technol 117:26–31

    CAS  Google Scholar 

  179. Zabihi Z, Araghi H (2017) Effective thermal conductivity of carbon nanostructure based polyethylene nanocomposite: influence of defected, doped, and hybrid filler. Int J Therm Sci 120:185–189

    CAS  Google Scholar 

  180. Pradhan B, Srivastava SK (2014) Synergistic effect of three-dimensional multi-walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym Int 63(7):1219–1228

    CAS  Google Scholar 

  181. Ren PG, Di YY, Zhang Q, Li L, Pang H, Li ZM (2012) Composites of ultrahigh-molecular-weight polyethylene with graphene sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297(5):437–443

    CAS  Google Scholar 

  182. Al-Saleh MH (2015) Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth Met 209:41–46

    CAS  Google Scholar 

  183. Huang X, Zhi C, Jiang P (2012) Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. J Phys Chem C 116(44):23812–23820

    CAS  Google Scholar 

  184. Inuwa I, Arjmandi R, Ibrahim AN, Haafiz MM, Wong S, Majeed K et al (2016) Enhanced mechanical and thermal properties of hybrid graphene nanoplatelets/multiwall carbon nanotubes reinforced polyethylene terephthalate nanocomposites. Fibers Polym 17(10):1657–1666

    CAS  Google Scholar 

  185. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM et al (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3):793–803

    CAS  Google Scholar 

  186. Kim HS, Kim JH, Yang C-M, Kim SY (2017) Synergistic enhancement of thermal conductivity in composites filled with expanded graphite and multi-walled carbon nanotube fillers via melt-compounding based on polymerizable low-viscosity oligomer matrix. J Alloys Compd 690:274–280

    CAS  Google Scholar 

  187. Han NR, Cho JW (2018) Effect of click coupled hybrids of graphene oxide and thin-walled carbon nanotubes on the mechanical properties of polyurethane nanocomposites. Compos A Appl Sci Manuf 109:376–381

    CAS  Google Scholar 

  188. Wang J, Jin X, Wu H, Guo S (2017) Polyimide reinforced with hybrid graphene oxide@ carbon nanotube: toward high strength, toughness, electrical conductivity. Carbon 123:502–513

    CAS  Google Scholar 

  189. Zhang S, Yin S, Rong C, Huo P, Jiang Z, Wang G (2013) Synergistic effects of functionalized graphene and functionalized multi-walled carbon nanotubes on the electrical and mechanical properties of poly (ether sulfone) composites. Eur Polym J 49(10):3125–3134

    CAS  Google Scholar 

  190. Kim M, Park Y-B, Okoli OI, Zhang C (2009) Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites. Compos Sci Technol 69(3–4):335–342

    CAS  Google Scholar 

  191. Han X, Zhao Y, Sun J-M, Li Y, Zhang J-D, Hao Y (2017) Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites. New Carbon Mater 32(1):48–55

    Google Scholar 

  192. Godara A, Mezzo L, Luizi F, Warrier A, Lomov SV, van Vuure AW et al (2009) Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites. Carbon 47(12):2914–2923

    CAS  Google Scholar 

  193. Deng C, Jiang J, Liu F, Fang L, Wang J, Li D et al (2015) Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite. Appl Surf Sci 357:1274–1280

    CAS  Google Scholar 

  194. Lv P, Feng Y-Y, Zhang P, Chen H-M, Zhao N, Feng W (2011) Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon 49(14):4665–4673

    CAS  Google Scholar 

  195. Rahmanian S, Suraya A, Shazed M, Zahari R, Zainudin E (2014) Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers. Mater Des 60:34–40

    CAS  Google Scholar 

  196. Wu G, Ma L, Liu L, Wang Y, Xie F, Zhong Z et al (2015) Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers. Compos B Eng 82:50–58

    CAS  Google Scholar 

  197. Liu Y, He D, Hamon A-L, Fan B, Haghi-Ashtiani P, Reiss T et al (2018) Comparison of different surface treatments of carbon fibers used as reinforcements in epoxy composites: interfacial strength measurements by in situ scanning electron microscope tensile tests. Compos Sci Technol 167:331–338

    CAS  Google Scholar 

  198. Tariq F, Shifa M, Baloch RA (2018) Mechanical and thermal properties of multi-scale carbon nanotubes–carbon fiber–epoxy composite. Arab J Sci Eng 43:5937–5948

    CAS  Google Scholar 

  199. Godara A, Gorbatikh L, Kalinka G, Warrier A, Rochez O, Mezzo L et al (2010) Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos Sci Technol 70(9):1346–1352

    CAS  Google Scholar 

  200. Ma L, Wu L, Cheng X, Zhuo D, Weng Z, Wang R (2015) Improving the interlaminar properties of polymer composites using a situ accumulation method to construct the multi-scale reinforcement of carbon nanofibers/carbon fibers. Compos A Appl Sci Manuf 72:65–74

    CAS  Google Scholar 

  201. Quan D, Urdániz JL, Ivanković A (2018) Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes. Mater Des 143:81–92

    CAS  Google Scholar 

  202. Ranjbar M, Feli S (2019) Mechanical and low-velocity impact properties of epoxy-composite beams reinforced by MWCNTs. J Compos Mater 53:693–705

    CAS  Google Scholar 

  203. Prusty RK, Rathore DK, Ray BC (2018) Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: an emphasis on aging temperature. J Appl Polym Sci 135(11):45987

    Google Scholar 

  204. Mei H, Xia J, Zhang D, Li H, Bai Q, Cheng L (2017) Mechanical properties of carbon fiber reinforced bisphenol A dicyanate ester composites modified with multiwalled carbon nanotubes. J Appl Polym Sci 134(29):45100

    Google Scholar 

  205. Yourdkhani M, Liu W, Baril-Gosselin S, Robitaille F, Hubert P (2018) Carbon nanotube-reinforced carbon fibre-epoxy composites manufactured by resin film infusion. Compos Sci Technol 166:169–175

    CAS  Google Scholar 

  206. Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y et al (2018) Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Compos Sci Technol 154:28–36

    Google Scholar 

  207. Srikanth I, Kumar S, Kumar A, Ghosal P, Subrahmanyam C (2012) Effect of amino functionalized MWCNT on the crosslink density, fracture toughness of epoxy and mechanical properties of carbon–epoxy composites. Compos A Appl Sci Manuf 43(11):2083–2086

    CAS  Google Scholar 

  208. Zhang Q, Wu J, Gao L, Liu T, Zhong W, Sui G et al (2016) Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites. Mater Des 94:392–402

    CAS  Google Scholar 

  209. Ahmadi M, Zabihi O, Masoomi M, Naebe M (2016) Synergistic effect of MWCNTs functionalization on interfacial and mechanical properties of multi-scale UHMWPE fibre reinforced epoxy composites. Compos Sci Technol 134:1–11

    CAS  Google Scholar 

  210. Sharma K, Shukla M (2014) Three-phase carbon fiber amine functionalized carbon nanotubes epoxy composite: processing, characterisation, and multiscale modeling. J Nanomater 2014:2

    Google Scholar 

  211. Hadavand BS, Javid KM, Gharagozlou M (2013) Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater Des 50:62–67

    Google Scholar 

  212. Jia X, Zhu J, Li W, Chen X, Yang X (2015) Compressive and tensile response of CFRP cylinders induced by multi-walled carbon nanotubes. Compos Sci Technol 110:35–44

    CAS  Google Scholar 

  213. Muthu J, Dendere C (2014) Functionalized multiwall carbon nanotubes strengthened GRP hybrid composites: improved properties with optimum fiber content. Compos B Eng 67:84–94

    CAS  Google Scholar 

  214. Wu G, Ma L, Liu L, Wang Y, Huang Y (2015) Interfacial improvement of carbon fiber-reinforced methylphenylsilicone resin composites with sizing agent containing functionalized carbon nanotubes. J Adhes Sci Technol 29(21):2295–2310

    CAS  Google Scholar 

  215. Yu B, Jiang Z, Tang X-Z, Yue CY, Yang J (2014) Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating. Compos Sci Technol 99:131–140

    CAS  Google Scholar 

  216. Li M, Gu Y, Liu Y, Li Y, Zhang Z (2013) Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 52:109–121

    CAS  Google Scholar 

  217. Zhang Q, Wu J, Gao L, Liu T, Zhong W, Sui G et al (2016) Influence of a liquid-like MWCNT reinforcement on interfacial and mechanical properties of carbon fiber filament winding composites. Polymer 90:193–203

    CAS  Google Scholar 

  218. Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A (2015) Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos A Appl Sci Manuf 70:82–92

    CAS  Google Scholar 

  219. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos B Eng 69:335–341

    CAS  Google Scholar 

  220. Wang F, Drzal LT, Qin Y, Huang Z (2016) Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J Mater Sci 51(7):3337–3348. https://doi.org/10.1007/s10853-015-9649-x

    Article  CAS  Google Scholar 

  221. Imran KA, Shivakumar KN (2019) Graphene-modified carbon/epoxy nanocomposites: electrical, thermal and mechanical properties. J Compos Mater 53(1):93–106

    CAS  Google Scholar 

  222. Xu J, Xu D, Wang X, Long S, Yang J (2017) Improved interfacial shear strength of carbon fiber/polyphenylene sulfide composites by graphene. High Perform Polym 29(8):913–921

    CAS  Google Scholar 

  223. Li Y, Zhang H, Huang Z, Bilotti E, Peijs T (2017) Graphite nanoplatelet modified epoxy resin for carbon fibre reinforced plastics with enhanced properties. J Nanomater. Article ID 5194872

  224. Qin W, Vautard F, Drzal LT, Yu J (2016) Modifying the carbon fiber–epoxy matrix interphase with graphite nanoplatelets. Polym Compos 37(5):1549–1556

    CAS  Google Scholar 

  225. Wang X, Li C, Chi Y, Piao M, Chu J, Zhang H et al (2018) Effect of graphene nanowall size on the interfacial strength of carbon fiber reinforced composites. Nanomaterials (Basel, Switzerland). https://doi.org/10.3390/nano8060414

    Article  Google Scholar 

  226. Papageorgiou DG, Kinloch IA, Young RJ (2016) Hybrid multifunctional graphene/glass-fibre polypropylene composites. Compos Sci Technol 137:44–51

    CAS  Google Scholar 

  227. Chen J, Wang K, Zhao Y (2018) Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos Sci Technol 154:175–186

    CAS  Google Scholar 

  228. Umer R, Li Y, Dong Y, Haroosh H, Liao K (2015) The effect of graphene oxide (GO) nanoparticles on the processing of epoxy/glass fiber composites using resin infusion. Int J Adv Manuf Technol 81(9–12):2183–2192

    Google Scholar 

  229. Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X et al (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4(3):1543–1552

    CAS  Google Scholar 

  230. Díez-Pascual AM, Díez-Vicente AL (2017) Multifunctional poly (glycolic acid-co-propylene fumarate) electrospun fibers reinforced with graphene oxide and hydroxyapatite nanorods. J Mater Chem B 5(22):4084–4096

    Google Scholar 

  231. Ma Y, Yan C, Xu H, Liu D, Shi P, Zhu Y et al (2018) Enhanced interfacial properties of carbon fiber reinforced polyamide 6 composites by grafting graphene oxide onto fiber surface. Appl Surf Sci 452:286–298

    CAS  Google Scholar 

  232. Deng C, Jiang J, Liu F, Fang L, Wang J, Li D et al (2015) Effects of electrophoretically deposited graphene oxide coatings on interfacial properties of carbon fiber composite. J Mater Sci 50(17):5886–5892. https://doi.org/10.1007/s10853-015-9138-2

    Article  CAS  Google Scholar 

  233. Adak NC, Chhetri S, Kim NH, Murmu NC, Samanta P, Kuila T (2018) Static and dynamic mechanical properties of graphene oxide-incorporated woven carbon fiber/epoxy composite. J Mater Eng Perform 27(3):1138–1147

    CAS  Google Scholar 

  234. Wang CC, Ge HY, Liu HS, Liang JJ (2016) Properties of carbon fiber and composites modified with different-sized graphene oxide sheets. Polym Compos 37(9):2719–2726

    CAS  Google Scholar 

  235. Zhang Q, Jiang D, Liu L, Huang Y, Long J, Wu G et al (2015) Effects of graphene oxide modified sizing agents on interfacial properties of carbon fibers/epoxy composites. J Nanosci Nanotechnol 15(12):9807–9811

    CAS  Google Scholar 

  236. Jiang D, Liu L, Wu G, Zhang Q, Long J, Wu Z et al (2017) Mechanical properties of carbon fiber composites modified with graphene oxide in the interphase. Polym Compos 38(11):2425–2432

    CAS  Google Scholar 

  237. Tang XZ, Yu B, Hansen RV, Chen X, Hu X, Yang J (2015) Grafting low contents of branched polyethylenimine onto carbon fibers to effectively improve their interfacial shear strength with an epoxy matrix. Adv Mater Interfaces 2(12):1500122

    Google Scholar 

  238. Li Y, Zhao Y, Sun J, Hao Y, Zhang J, Han X (2016) Mechanical and electromagnetic interference shielding properties of carbon fiber/graphene nanosheets/epoxy composite. Polym Compos 37(8):2494–2502

    CAS  Google Scholar 

  239. Ramos-Fernandez G, Muñoz M, García-Quesada JC, Rodriguez-Pastor I, Martin-Gullon I (2018) Role of graphene oxide surface chemistry on the improvement of the interlaminar mechanical properties of resin infusion processed epoxy-carbon fiber composites. Polymer Composites. 39(54):E2116–E2124

    CAS  Google Scholar 

  240. Jiang S, He Z, Li Q, Wang J, Wu G, Zhao Y et al (2019) Effect of carbon fiber-graphene oxide multiscale reinforcements on the thermo-mechanical properties of polyurethane elastomer. Polym Compos 40(52):E953–E961

    CAS  Google Scholar 

  241. Fan J, Shi Z, Zhang L, Wang J, Yin J (2012) Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Nanoscale 4(22):7046–7055

    CAS  Google Scholar 

  242. Du S-S, Li F, Xiao H-M, Li Y-Q, Hu N, Fu S-Y (2016) Tensile and flexural properties of graphene oxide coated-short glass fiber reinforced polyethersulfone composites. Compos B Eng 99:407–415

    CAS  Google Scholar 

  243. Jiang S, Li Q, Wang J, He Z, Zhao Y, Kang M (2016) Multiscale graphene oxide–carbon fiber reinforcements for advanced polyurethane composites. Compos A Appl Sci Manuf 87:1–9

    CAS  Google Scholar 

  244. Li F, Liu Y, Qu C-B, Xiao H-M, Hua Y, Sui G-X et al (2015) Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating. Polymer 59:155–165

    CAS  Google Scholar 

  245. Tian M, Qu L, Zhang X, Zhang K, Zhu S, Guo X et al (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohyd Polym 111:456–462

    CAS  Google Scholar 

  246. Zhao Y-H, Zhang Y-F, Bai S-L, Yuan X-W (2016) Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties. Compos B Eng 94:102–108

    CAS  Google Scholar 

  247. Ashori A, Menbari S, Bahrami R (2016) Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating. J Ind Eng Chem 38:37–42

    CAS  Google Scholar 

  248. Davis DC, Wilkerson JW, Zhu J, Ayewah DO (2010) Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology. Compos Struct 92(11):2653–2662

    Google Scholar 

  249. Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci 50(7):2797–2805. https://doi.org/10.1007/s10853-015-8837-z

    Article  CAS  Google Scholar 

  250. Yao X, Jiang J, Xu C, Zhou L, Deng C, Wang J (2017) Improved interfacial properties of carbon fiber/epoxy composites through graphene oxide-assisted deposition of carbon nanotubes on carbon fiber surface. Fibers Polym 18(7):1323–1329

    CAS  Google Scholar 

  251. Li Y, Guo L-J, Wang Y-W, Li H-J, Song Q (2016) A novel multiscale reinforcement by in situ growing carbon nanotubes on graphene oxide grafted carbon fibers and its reinforced carbon/carbon composites with improved tensile properties. J Mater Sci Technol 32(5):419–424

    Google Scholar 

  252. Mąka H, Spychaj T, Pilawka R, Dziedzic P (2016) Influence of hybrid carbon nanofillers on the cure behavior and properties of epoxy material. Polimery 61(3):181–188

    Google Scholar 

  253. Kwon YJ, Kim Y, Jeon H, Cho S, Lee W, Lee JU (2017) Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Compos B Eng 122:23–30

    CAS  Google Scholar 

  254. Lee JU, Park B, Kim B-S, Bae D-R, Lee W (2016) Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content. Compos A Appl Sci Manuf 84:482–489

    CAS  Google Scholar 

  255. Yongqiang L, Chunzheng P (2018) Improved interfacial properties of PI composites through graphene oxide and carbon nanotubes on carbon fiber surface. Surf Interface Anal 50(6):634–639

    Google Scholar 

  256. Hua Y, Li F, Liu Y, Huang G-W, Xiao H-M, Li Y-Q et al (2017) Positive synergistic effect of graphene oxide/carbon nanotube hybrid coating on glass fiber/epoxy interfacial normal bond strength. Compos Sci Technol 149:294–304

    CAS  Google Scholar 

  257. Ishikawa T, Amaoka K, Masubuchi Y, Yamamoto T, Yamanaka A, Arai M et al (2018) Overview of automotive structural composites technology developments in Japan. Compos Sci Technol 155:221–246

    CAS  Google Scholar 

  258. Yi J, Wang T, Xie Z, Xue W (2013) Zirconia-based nanocomposite toughened by functionalized multi-wall carbon nanotubes. J Alloys Compd 581:452–458

    CAS  Google Scholar 

  259. Hayatgheib Y, Ramezanzadeh B, Kardar P, Mahdavian M (2018) A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite. Corros Sci 133:358–373

    CAS  Google Scholar 

  260. Selim MS, El-Safty SA, El-Sockary MA, Hashem AI, Elenien OMA, El-Saeed AM et al (2016) Smart photo-induced silicone/TiO2 nanocomposites with dominant exposed surfaces for self-cleaning foul-release coatings of ship hulls. Mater Des 101:218–225

    CAS  Google Scholar 

  261. Fan W, Zhang L, Liu T (2017) Graphene-carbon nanotube hybrids for energy and environmental applications. Springer, Berlin

    Google Scholar 

  262. Fan W, Zhang L, Liu T (2017) Graphene-CNT hybrids for energy applications. graphene-carbon nanotube hybrids for energy and environmental applications. Springer, Berlin, pp 53–90

    Google Scholar 

  263. Yu S, Tang Y, Li Z, Chen K, Ding X, Yu B (2018) Enhanced optical and thermal performance of white light-emitting diodes with horizontally layered quantum dots phosphor nanocomposites. Photon Res 6(2):90–98

    CAS  Google Scholar 

  264. Omar G, Salim M, Mizah B, Kamarolzaman A, Nadlene R (2019) Electronic applications of functionalized graphene nanocomposites. Functionalized graphene nanocomposites and their derivatives. Elsevier, Amsterdam, pp 245–263

    Google Scholar 

  265. Zhang L, Wu H, Zheng Z, He H, Wei M, Huang X (2019) Fabrication of graphene oxide/multi-walled carbon nanotube/urushiol formaldehyde polymer composite coatings and evaluation of their physico-mechanical properties and corrosion resistance. Prog Org Coat 127:131–139

    CAS  Google Scholar 

  266. Kugler S, Kowalczyk K, Spychaj T (2017) Influence of synthetic and bio-based amine curing agents on properties of solventless epoxy varnishes and coatings with carbon nanofillers. Prog Org Coat 109:83–91

    CAS  Google Scholar 

  267. Tong Y (2019) Application of new materials in sports equipment. IOP conference series: materials science and engineering. IOP Publishing, Bristol, p 012112

    Google Scholar 

  268. Zhang L (2015) The application of composite fiber materials in sports equipment. In: 2015 international conference on education, management, information and medicine. Atlantis Press

  269. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M (2013) Carbon fiber reinforced PEEK Optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 17:221–228

    CAS  Google Scholar 

  270. Zhang B, Wang Y, Zhai G (2016) Biomedical applications of the graphene-based materials. Mater Sci Eng C 61:953–964

    CAS  Google Scholar 

  271. Nataraj L, Coatney M, Cain J, Hall A (2018) Carbon nanotube-embedded advanced aerospace composites for early-stage damage sensing. In: Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation XII: international society for optics and photonics, p 105990J

  272. Zhang H, Kuwata M, Bilotti E, Peijs T (2015) Integrated damage sensing in fibre-reinforced composites with extremely low carbon nanotube loadings. J Nanomater 16(1):243

    Google Scholar 

  273. Moriche R, Jiménez-Suárez A, Sánchez M, Prolongo SG, Ureña A (2018) High sensitive damage sensors based on the use of functionalized graphene nanoplatelets coated fabrics as reinforcement in multiscale composite materials. Compos B Eng 149:31–37

    CAS  Google Scholar 

  274. Hao B, Ma Q, Yang S, Mäder E, Ma P-C (2016) Comparative study on monitoring structural damage in fiber-reinforced polymers using glass fibers with carbon nanotubes and graphene coating. Compos Sci Technol 129:38–45

    CAS  Google Scholar 

  275. Tzounis L, Zappalorto M, Panozzo F, Tsirka K, Maragoni L, Paipetis AS et al (2019) Highly conductive ultra-sensitive SWCNT-coated glass fiber reinforcements for laminate composites structural health monitoring. Compos B Eng 169:37–44

    CAS  Google Scholar 

  276. Du X, Zhou H, Sun W, Liu H-Y, Zhou G, Zhou H et al (2017) Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos Sci Technol 140:123–133

    CAS  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sharma, K. & Dixit, A.R. Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J Mater Sci 55, 2682–2724 (2020). https://doi.org/10.1007/s10853-019-04196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04196-y