Skip to main content

Advertisement

Log in

Thermoelectric properties of BiSbTe alloy nanofilms produced by DC sputtering: experiments and modeling

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoelectricity refers to the conversion of thermal energy into electrical energy and vice versa, which relies on three main effects: Seebeck, Peltier and Thomson, all of which are manifestations of heat and electricity flow. In this work, we investigate the deposition of nanometric films and the effect of a thermal treatment on their thermoelectric properties. The films are based on BiSbTe ternary alloys, obtained by deposition on a substrate using the DC sputtering technique. We produced sputtering targets with repurposed materials from commercial thermoelectric modules. In this way, we explore an environmentally responsible destination for discarded devices, with in situ preparation and manufacture of film-based thermoelectric modules. Film samples show an improvement trend in thermoelectric efficiency as the annealing temperature is increased in the range 423–623 K. The experimental data regarding thermal conductivity, electrical resistivity (or electrical conductivity), and the Seebeck coefficient were analyzed with the theory of q-deformed algebra. Applying a q-deformation to our system, we can model the effect of the annealing temperature on the thermal and electrical conductivities, as well as the Seebeck coefficient, and argue that the q-factor must be related to structural properties of the films. We believe that our work could pave the way for future developments in the modeling of experimental measurements via the formalism of q-deformation algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. de Groot SR (1952) Thermodynamics of irreversible processes. N. Holland Publishing Co., Amsterdam

    Google Scholar 

  2. Rowe DM, Bhandari CM (1983) Modem thermoelectrics, Holt Technology

  3. Cooke-Yarborough EH, Yeats FW (1975) Efficient thermo-mechanical generation of electricity from the heat of radioisotopes. In: Proceedings of Xth IECEC, 1033

  4. Huang B, Kaviany M (2010) Filler-reduced phonon conductivity of thermoelectric skutterudites: ab initio calculations and molecular dynamics simulations. Acta Mater 58:4516–4526

    Article  CAS  Google Scholar 

  5. Kim MY, Oh TS (2009) Electrodeposition and thermoelectric characteristics of \({\text{ Bi }}_2{\text{ Te }}_3\) and \({\text{ Sb }}_2{\text{ Te }}_3\) films for thermopile sensor applications. J Electron Mater 38:1176–1181

    Article  CAS  Google Scholar 

  6. Harman TC et al (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229–2232

    Article  CAS  Google Scholar 

  7. Venkatasubramanian R et al (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    Article  CAS  Google Scholar 

  8. Harman TC et al (2002) Nanostructured thermoelectric materials. J Eletron Mater 34:L19–L22

    Article  Google Scholar 

  9. Shakouri A (2006) Nanoscale thermal transport and microrefrigerators on a chip. Proc IEEE 94:1613–1638

    Article  CAS  Google Scholar 

  10. Gross AJ (2010) Low power, integrated, thermoelectric micro-coolers for microsystems applications. University of Michigan, Ph.D. dissertation

  11. Vining CB et al (1991) A model for the high-temperature transport properties of heavily doped n-type silicon–germanium alloys. J Appl Phys 69:331–340

    Article  CAS  Google Scholar 

  12. Fano V (1994) CRC handbook of thermoelectrics. In: Rowe DM (ed) CRC Press, Boca Raton, p 257

  13. Cope RG, Penn AW (1968) The powder metallurgy of n-type \({\text{ Bi }}_2{\text{Te}}_{2.55}{\text{Se}}_{0.45}\) thermoelectric material. J. Mater. Sci. 3:103–109. https://doi.org/10.1007/BF00585476

  14. Felix IM, Pereira LFC (2018) Thermal conductivity of graphene-hBN superlattice ribbons. Sci Rep 8:2737

    Article  CAS  Google Scholar 

  15. Takashiri M et al (2008) Structural and thermoelectric properties of fine-grained \({\text{Bi}}_{0.4}{\text{Te}}_{3.0}{\text{Sb}}_{1.6}\) thin films with orientation deposited by flash evaporation method. Thin Solid Films 516:6336–6343

    Article  CAS  Google Scholar 

  16. German RM (1998) Powder metallurgy of iron and steel. Wiley, New York

    Google Scholar 

  17. Bouville F, Studart AR (2017) Geologically-inspired strong bulk ceramics made with water at room temperature. Nat Commun 8:14655

    Article  Google Scholar 

  18. Dughaish ZH (2002) Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B Cond Mater 322:205–223

    Article  CAS  Google Scholar 

  19. Goldsmid HJ (2014) Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7:2577–2592

    Article  CAS  Google Scholar 

  20. Kim H et al (2012) Effects of \({\text{ Bi }}_2{\text{ Se }}_3\) nanoparticle inclusions on the microstructure and thermoelectric properties of \({\text{ Bi }}_2{\text{ Te }}_3\)-based nanocomposites. J Electron Mater 41:3411–3416

    Article  CAS  Google Scholar 

  21. Muller E et al (1996) Determination of the thermal band gap from the change of the Seebeck coefficient at the pn-transition in \({\text{ Bi }}_{0.5}{\text{ Sb }}_{1.5}{\text{ Te }}_3\). In: Proceedings of the IEEE, Pasadena CA USA, pp 26–29

  22. Goldsmid HJ et al (1988) High-Tc superconductors as passive thermo-elements. J Phys D 21:344–348

    Article  CAS  Google Scholar 

  23. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731

    Article  CAS  Google Scholar 

  24. Gentile G (1940) Osservazioni sopra le statistiche intermedie. Nuovo Cimento 17:493–497

    Article  CAS  Google Scholar 

  25. Green HS (1953) A generalized method of field quantization. Phys Rev 90:270–273

    Article  Google Scholar 

  26. Polychronakos AP (1996) Probabilities and path-integral realization of exclusion statistics. Phys Lett B 365:202–206

    Article  CAS  Google Scholar 

  27. Biedenharn LC (1989) The quantum group \(SU_{q}(2)\) and a q-analogue of the boson operators. J Phys A Math Gen 22:L873–L878

    Article  Google Scholar 

  28. Macfarlane A (1989) On q-analogues of the quantum harmonic oscillator and the quantum group \(SU(2)_q\). J Phys A Math Gen 22:4581

    Article  Google Scholar 

  29. Pharthasarathy R, Viswanathan KS (1991) A q-analogue of the supersymmetric oscillator and its q-superalgebra. J Phys A Math Gen 24:613–617

    Article  Google Scholar 

  30. Chaichian M, Gonzales Felipe R, Montonen C (1993) Statistics of q-oscillators, quons and relations to fractional statistics. J Phys A Math Gen 26:4017–4033

    Article  Google Scholar 

  31. Fuchs J (1992) Affine Lie algebras and quantum groups. Cambridge University Press, Cambridge

    Google Scholar 

  32. Gavrilik AM, Rebesh AP (2012) Deformed gas of \(p,q\)-bosons: virial expansion and virial coefficients. Mod Phys Lett B 26:1150030

    Article  Google Scholar 

  33. Lavagno A, Swamy PN (2000) Thermostatistics of a q-deformed boson gas. Phys Rev E 61:1218–1226

    Article  CAS  Google Scholar 

  34. Lavagno A, Swamy PN (2002) Generalized thermodynamics of q-deformed bosons and fermions. Phys Rev E 65:036101

    Article  CAS  Google Scholar 

  35. Hatami N, Setare MR (2016) The q-deformed Dirac oscillator in \(2+1\) dimensions. Phys Lett A 380:3469–3472

    Article  CAS  Google Scholar 

  36. Algin A, Senay M (2016) General thermostatistical properties of a q-deformed fermion gas in two dimensions. J Phys Conf Ser 766:012008

    Article  CAS  Google Scholar 

  37. Algin A, Senay M (2016) Fermionic q-deformation and its connection to thermal effective mass of a quasiparticle. Physica A 447:232–246

    Article  CAS  Google Scholar 

  38. Algin A, Arikan AS (2017) Effective approach for taking into account interactions of quasiparticles from the low-temperature behavior of a deformed fermion-gas model. J Stat Mech Theory Exp P043105

  39. Chung WS, Algin A (2017) Duality of boson and fermion: new intermediate-statistics. Phys Lett A 381:3266–3271

    Article  CAS  Google Scholar 

  40. Algin A, Olkun A (2017) Bose–Einstein condensation in low dimensional systems with deformed bosons. Ann Phys 383:239–256

    Article  CAS  Google Scholar 

  41. Hoyuelos M (2018) From creation and annihilation operators to statistics. Physica A 490:944–952

    Article  Google Scholar 

  42. Gavrilik AM et al (2018) Condensate of \(\mu \)-Bose gas as a model of dark matter. Physica A 506:835–843

    Article  CAS  Google Scholar 

  43. Tsallis C (1988) Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys 52:479–487

    Article  Google Scholar 

  44. Plastino AR et al (2014) Stationary and uniformly accelerated states in nonlinear quantum mechanics. Phys Rev A 90:062134

    Article  CAS  Google Scholar 

  45. Brito S, da Silva LR, Tsallis C (2016) Role of dimensionality in complex networks. Nat Sci Rep 6:27992

    Article  CAS  Google Scholar 

  46. Ourabah K, Tribeche M (2014) Planck radiation law and Einstein coefficients reexamined in Kaniadakis \(\kappa \) statistics. Phys Rev E 89:062130

    Article  CAS  Google Scholar 

  47. Mohammadzadeh H, Adli F, Nouri S (2016) Pertubative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. Phys Rev E 94:062118

    Article  Google Scholar 

  48. Rovenchak A (2018) Ideal Bose-gas in nonadditive statistics. Low Temp Phys 44:1025–1031

    Article  CAS  Google Scholar 

  49. Adli F et al (2019) Condensation of nonextensive ideal Bose gas and critical exponents. Physica A 521:773–780

    Article  Google Scholar 

  50. Chung WS, Gavrilik AM, Nazarenko AV (2019) Photon gas at the Planck scale within the doubly special relativity. Physica A 533:121928

    Article  Google Scholar 

  51. Ernst T The History of \(q\)-calculus and a new method. (Dep. Math., Uppsala Univ. 1999–2000)

  52. Floratos EG (1991) The many-body problem for q-oscillators. J Phys Math 24:4739

    Article  Google Scholar 

  53. Patthria RK (1972) Statistical mechanics. Pergamon Press, Oxford

    Google Scholar 

  54. Reif F (1965) Fundamentals of statistical and thermal physics, Tokyo

  55. Huang K (1987) Statistical mechanics. Wiley, New York

    Google Scholar 

  56. Kittel C (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  57. Ziman JM (1960) Electron and phonons: the theory of transport phenomena in solids. Oxford University Press, Oxford

    Google Scholar 

  58. Bourgault D et al (2008) Thermoelectric properties of n-type \({\text{ Bi }}_2{\text{ Te }}_{2.7}{\text{ Se }}_{0.3}\) and p-type \({\text{ Bi }}_{0.5}{\text{ Sb }}_{1.5}{\text{ Te }}_{3}\) thin films deposited by direct current magnetron sputtering. Thin Solid Films 516: 8579–8583

  59. Huang H et al (2009) Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering. Thin Solid Films 517:3731–3734

    Article  CAS  Google Scholar 

  60. Marinho AA, Brito FA, Chesman C (2012) Thermal properties of a solid through q-deformed algebra. Physica A 391:3424–3434

    Article  Google Scholar 

  61. Tristant D, Brito FA (2014) Some electronic properties of metals through q-deformed algebras. Physica A 407:276–286

    Article  Google Scholar 

  62. Marinho AA, Brito FA, Chesman C (2014) Application of Fibonacci oscillators in the Debye model. J Phys Conf Ser 568:012009

    Article  Google Scholar 

  63. Marinho AA, Brito FA, Chesman C (2016) Thermal and electrical properties of a solid through Fibonacci oscillators. Physica A 443:324–332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank CAPES, CNPq (Grants 309961/2017-3, 436859/2018-1, 312104/2018-9) and PNPD/PROCAD-CAPES, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Felipe C. Pereira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinho, A.A., Costa, N.P., Pereira, L.F.C. et al. Thermoelectric properties of BiSbTe alloy nanofilms produced by DC sputtering: experiments and modeling. J Mater Sci 55, 2429–2438 (2020). https://doi.org/10.1007/s10853-019-04188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04188-y

Navigation