Skip to main content

Advertisement

Log in

Rigorous design of outermost surface of TiO2 via one-step single-mode magnetic microwave field toward highly efficient visible-light photocatalyst

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Among numerous efforts toward preparation of visible-light TiO2, recently design and control for chemical structure of TiO2 outermost surface have been paid strong attention to enhance photocatalytic performance. We have previously succeeded in direct synthesis of structurally well-controlled TiO2 with highly concentrated Ti3+ from metal titanium particle via single-mode magnetic microwave (SMMW)-assisted reactions. Here, we demonstrate synthesis of Ti3+ and interstitial nitrogen (Nint) co-doped TiO2 in Ar/O2/N2 system during one-step SMMW-assisted reactions, where chemical structure of outermost surface is rigorously controlled. In addition, such one-step-generated TiO2 shows significant thermal stability which has not been achieved in previously reported deficient TiO2 even through several step reactions. Additionally, the synthesized co-doped TiO2 with specific surface structures shows superior visible-light photocatalytic performance for photo-degradation of rhodamine B. The mechanism of outermost surface formation is systematically investigated by characterizations of XRD, XPS, UV–Vis absorption and PL. It demonstrates that the specific TiO2 surface including highly concentrated Ti3+ and Nint can be attributed to the rapid heat-dynamics during the reaction, which enhance the efficiency for separation of photo-excited carriers. The one-step SMMW-assisted reactions on metallic particle as bottom-up process will open new strategy for material design of functional metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. LinSebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    CAS  Google Scholar 

  2. Sayama K, Arakawa H (1993) Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst. J Phys Chem 97:531–533

    CAS  Google Scholar 

  3. Wang S, Ang HM, Tade OM (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705

    CAS  Google Scholar 

  4. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43:4463–4466

    CAS  Google Scholar 

  5. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    CAS  Google Scholar 

  6. Chen X, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019

    CAS  Google Scholar 

  7. Cao YQ, Zhao XR, Chen J, Zhang W, Li M, Zhu L, Zhang XJ, Wu D, Li AD (2018) TiOxNy modified TiO2 powders prepared by plasma enhanced atomic layer deposition for highly visible light photocatalysis. Sci Rep 8:12131–12139

    Google Scholar 

  8. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

    CAS  Google Scholar 

  9. Chae YK, Mori S, Suzuki M (2009) Visible-light photocatalytic activity of anatase TiO2 treated with argon plasma. Thin Solid Films 517:4260–4263

    CAS  Google Scholar 

  10. Wum H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D (2013) Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. Nanotechnology 24:455401–455407

    Google Scholar 

  11. Lee HU, Lee YC, Lee SC, Park SY, Son B, Lee JW, Lim CH, Choi CJ, Choi MH, Lee SY, Oh YK, Lee J (2014) Visible-light-responsive bicrystalline (anatase/brookite) nanoporous nitrogen-doped TiO2 photocatalysts by plasma treatment. Chem Eng J 254:268–275

    CAS  Google Scholar 

  12. Yamada K, Nakamura H, Matsushima S, Yamane H, Haishi T, Ohira K, Kumada K (2006) Preparation of N-doped TiO2 particles by plasma surface modification. C R Chim 9:788–793

    CAS  Google Scholar 

  13. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    CAS  Google Scholar 

  14. Liu H, Ma HT, Li XZ, Li WZ, Wu M, Bao XH (2003) The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 50:39–46

    CAS  Google Scholar 

  15. Shin JY, Joo JH, Samuelis D, Maier J (2012) Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem Mater 24:543–551

    CAS  Google Scholar 

  16. Kato K, Vaucher S, Hoffmann P, Xin Y, Shirai T (2019) A novel single-mode microwave assisted synthesis of metal oxide as visible-light photocatalyst. Mater Lett 235:125–128

    CAS  Google Scholar 

  17. Kato K, Xin Y, Shirai T (2019) Structural-controlled synthesis of highly efficient visible light TiO2 photocatalyst via one-step single-mode microwave assisted reaction. Sci Rep 9:4900

    Google Scholar 

  18. Valentin CD, Pacchioni G, Selloni A (2004) Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys Rev B 70:085116-4

    Google Scholar 

  19. Carley AF, Chalker PR, Rivieret JC, Roberts MW (1987) The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. Faraday Trans 83:351–370

    CAS  Google Scholar 

  20. Liu G, Yang HG, Wang X, Cheng L, Lu H, Wang L, Lu GQ, Cheng HM (2009) Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant 001 facets. J Phys Chem C 113:21784–21788

    CAS  Google Scholar 

  21. Xing M, Zhang J, Chen F, Tian B (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun 47:4947–4949

    CAS  Google Scholar 

  22. Fang W, Xing M, Zhang J (2014) A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment. Appl Catal B 160:240–246

    Google Scholar 

  23. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    CAS  Google Scholar 

  24. Schaub R, Thostrup P, Lopez N, Lagsgaard E, Stensgaard I, Nurskov JK, Besenbacher F (2001) Oxygen vacancies as active sites for water dissociation on rutile TiO2(110). Phys Rev Lett 87:266104-4

    Google Scholar 

  25. Chen XB, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449

    CAS  Google Scholar 

  26. Nakamura R, Tanaka T, Nakatio Y (2004) Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J Phys Chem B 108:10617–10620

    CAS  Google Scholar 

  27. Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387

    CAS  Google Scholar 

  28. Valentin CD, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56

    Google Scholar 

  29. Chen Y, Cao X, Lin B, Gao B (2013) Origin of the visible-light photoactivity of NH3-treated TiO2: effect of nitrogen doping and oxygen vacancies. Appl Surf Sci 264:845–852

    CAS  Google Scholar 

  30. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Santo VD (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    CAS  Google Scholar 

  31. Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132:11856–11857

    CAS  Google Scholar 

  32. Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem 3:296–300

    CAS  Google Scholar 

  33. Okato T, Sakano T, Obara M (2005) Suppression of photocatalytic efficiency in highly N-doped anatase films. Phys Rev B 72:115124–115126

    Google Scholar 

  34. Tsetseris L (2010) Stability and dynamics of carbon and nitrogen dopants in anatase TiO2: a density functional theory study. Phys Rev B 81:165295–165297

    Google Scholar 

  35. Molodetsky IE, Vicenzi EP, Dreizin EL, Law CK (1998) Phase of titanium combustion in air. Combust Flame 112:522–532

    CAS  Google Scholar 

  36. Wu Z, Don F, Zhao W, Guo S (2008) Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride. J Hazard Mater 157:57–63

    CAS  Google Scholar 

  37. Nakamura I, Negishi N, Kutsuna S, Ihara T, Suhihara S, Takeuchi K (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A 161:205–212

    CAS  Google Scholar 

  38. Valentin CD, Pacchioni G (2009) Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C 113:20543–20552

    Google Scholar 

  39. Panayotov DA, Yates JT Jr (2007) n-type doping of TiO2 with atomic hydrogen-observation of the production of conduction band electrons by infrared spectroscopy. Chem Phys Lett 436:204–208

    CAS  Google Scholar 

  40. Peng F, Cai L, Yu H, Wang H, Yang J (2008) Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J Solid State Chem 181:130–136

    CAS  Google Scholar 

  41. Ananpattarachai J, Kajitvichyanukul P, Seraphin S (2009) Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J Hazard Mater 168:253–261

    CAS  Google Scholar 

  42. Valentin CD, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109:11414–11419

    Google Scholar 

  43. Li FB, Li XZ (2002) Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl Catal A Gen 228:15–27

    CAS  Google Scholar 

  44. Ozer LY, Apostoleris H, Ravaux F, Shylin SI, Mamedov F, Lindblad A, Johansson FOL, Chiesa M, Sá J, Palmisano G (2018) Long-lasting non-hydrogenated dark titanium dioxide: medium vacuum anneal for enhanced visible activity of modified multiphase photocatalysts. ChemCatChem 10:2949–2954

    CAS  Google Scholar 

  45. Pesci FM, Wang G, Klug DR, Li Y, Cowan AJ (2013) Efficient suppression of electron-hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J Phys Chem C 117:25837–25844

    CAS  Google Scholar 

  46. Lira E, Wendt S, Huo P, Hansen J, Streber R, Porsgaard S, Wei Y, Bechstein R, Lægsgaard E, Besenbacher F (2011) The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J Am Chem Soc 133:6529–6532

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shirai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, K., Xin, Y. & Shirai, T. Rigorous design of outermost surface of TiO2 via one-step single-mode magnetic microwave field toward highly efficient visible-light photocatalyst. J Mater Sci 55, 1692–1701 (2020). https://doi.org/10.1007/s10853-019-04155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04155-7

Profiles

  1. Kunihiko Kato