Skip to main content
Log in

Influence of B-site doping with Ti and Nb on microstructure and phase constitution of (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ (BSCF) with mixed ionic and electronic conductivity is promising as oxygen separation membrane. However, its exceptional oxygen permeability is linked to the cubic perovskite phase, which destabilizes below 825 °C. This work is concerned with the stabilizing effect of partial B-site substitution in BSCF by Ti (10%) and Nb (5% and 10%). In addition, the effect of B-site substoichiometry on the formation of CoO precipitates as nucleation sites for other secondary phases is studied. The focus of this work is laid on the analysis of the phase constitution in bulk material between 600 and 800 °C. Scanning electron microscopy and (scanning) transmission electron microscopy with high spatial resolution in combination with energy-dispersive X-ray spectroscopy are applied which allow to detect even small volume fractions of secondary phases. It is confirmed by quantitative analysis that Ti and Nb substitution reduces the formation of secondary phases up to ~ 95%. There is a solubility limit of Nb in BSCF, which leads to the precipitation of Nb-rich precipitates already at 5% Nb substitution in contrast to Ti which is fully soluble even at 10% substitution. Despite of that, BSCF doped with 5% Nb in combination with 5% substoichiometric B-site occupation is the most promising material, because it shows the lowest overall volume fraction of secondary phases (~ 0.8 vol% at 700 °C) and an almost negligible degradation rate in additionally recorded long-term resistivity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172(1–2):177–188

    Article  CAS  Google Scholar 

  2. McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Solid State Ionics 177(19–25):1737–1742

    Article  CAS  Google Scholar 

  3. Zeng P, Chen Z, Zhou W, Gu H, Shao Z, Liu S (2007) Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as oxygen semi-permeable membrane. J Membr Sci 291(1–2):148–156

    Article  CAS  Google Scholar 

  4. Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170–173

    Article  CAS  Google Scholar 

  5. Liu QL, Khor KA, Chan SH (2006) High-performance low-temperature solid oxide fuel cell with novel BSCF cathode. J Power Sources 161(1):123–128

    Article  CAS  Google Scholar 

  6. Švarcová S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178(35–36):1787–1791

    Article  Google Scholar 

  7. Niedrig C, Taufall S, Burriel M, Menesklou W, Wagner SF, Baumann S, Ivers-Tiffée E (2011) Thermal stability of the cubic phase in Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)1. Solid State Ionics 197(1):25–31

    Article  CAS  Google Scholar 

  8. Müller P, Störmer H, Dieterle L, Niedrig C, Ivers-Tiffée E, Gerthsen D (2012) Decomposition pathway of cubic Ba0.5Sr0.5Co0.8Fe0.2O3−δ between 700°C and 1000°C analyzed by electron microscopic techniques. Solid State Ionics 206:57–66

    Article  Google Scholar 

  9. Mueller DN, de Souza RA, Weirich TE, Roehrens D, Mayer J, Martin M (2010) A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1−xCo0.8Fe0.2O3−delta (BSCF) (x = 0.1 and 0.5). Phys Chem Chem Phys 12(35):10320–10328

    Article  CAS  Google Scholar 

  10. Arnold M, Gesing TM, Martynczuk J, Feldhoff A (2008) Correlation of the formation and the decomposition process of the BSCF perovskite at intermediate temperatures. Chem Mater 20(18):5851–5858

    Article  CAS  Google Scholar 

  11. Sun J, Yang M, Li G, Yang T, Liao F, Wang Y, Xiong M, Lin J (2006) New barium cobaltite series Ban+1ConO3n+3(Co8O8): intergrowth structure containing perovskite and CdI2-type layers. Inorg Chem 45(23):9151–9153

    Article  CAS  Google Scholar 

  12. Müller P, Störmer H, Meffert M, Dieterle L, Niedrig C, Wagner SF, Ivers-Tiffée E, Gerthsen D (2013) Secondary phase formation in Ba0.5Sr0.5Co0.8Fe0.2O3−δ studied by electron microscopy. Chem Mater 25(4):564–573

    Article  Google Scholar 

  13. Efimov K, Xu Q, Feldhoff A (2010) Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater 22(21):5866–5875

    Article  CAS  Google Scholar 

  14. Meffert M, Unger L-S, Störmer H, Sigloch F, Wagner SF, Ivers-Tiffée E, Gerthsen D (2019) The effect of B-site Y substitution on cubic phase stabilization in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ. J Am Ceram Soc 102(8):4929–4942

    Article  CAS  Google Scholar 

  15. Chen M, Hallstedt B, Gauckler LJ (2003) Thermodynamic assessment of the Co–O system. JPE 24(3):212–227

    Article  CAS  Google Scholar 

  16. Meffert M, Unger L-S, Grünewald L, Störmer H, Wagner SF, Ivers-Tiffée E, Gerthsen D (2017) The impact of grain size, A/B-cation ratio, and Y-doping on secondary phase formation in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ. J Mater Sci 52(5):2705–2719. https://doi.org/10.1007/s10853-016-0562-8

    Article  CAS  Google Scholar 

  17. Arnold M, Xu Q, Tichelaar FD, Feldhoff A (2009) Local charge disproportion in a high-performance perovskite. Chem Mater 21(4):635–640

    Article  CAS  Google Scholar 

  18. Harvey AS, Litterst FJ, Yang Z, Rupp JLM, Infortuna A, Gauckler LJ (2009) Oxidation states of Co and Fe in Ba1−xSrxCo1−yFeyO3−delta (x, y = 0.2–0.8) and oxygen desorption in the temperature range 300–1273 K. Phys Chem Chem Phys 11(17):3090–3098

    Article  CAS  Google Scholar 

  19. Müller P, Meffert M, Störmer H, Gerthsen D (2013) Fast mapping of the cobalt-valence state in Ba0.5Sr0.5Co0.8Fe0.2O3−δ by electron energy loss spectroscopy. Microsc Microanal 19(6):1595–1605

    Article  Google Scholar 

  20. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32(5):751–767

    Article  Google Scholar 

  21. Haworth P, Smart S, Glasscock J, Diniz da Costa JC (2011) Yttrium doped BSCF membranes for oxygen separation. Sep Purif Technol 81(1):88–93

    Article  CAS  Google Scholar 

  22. Yakovlev S, Yoo C-Y, Fang S, Bouwmeester HJM (2010) Phase transformation and oxygen equilibration kinetics of pure and Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide probed by electrical conductivity relaxation. Appl Phys Lett 96(25):254101–254103

    Article  Google Scholar 

  23. Nagai T, Ito W, Sakon T (2007) Relationship between cation substitution and stability of perovskite structure in SrCoO3−δ-based mixed conductors. Solid State Ionics 177(39–40):3433–3444

    Article  CAS  Google Scholar 

  24. Goodenough JB, Kafalas JA (1973) Exploring the A+B5+O3 compounds. J Solid State Chem 6(4):493–501

    Article  Google Scholar 

  25. Fang SM, Yoo C-Y, Bouwmeester HJM (2011) Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Solid State Ionics 195(1):1–6

    Article  CAS  Google Scholar 

  26. Bi L, Fabbri E, Traversa E (2012) Novel Ba0.5Sr0.5(Co0.8Fe0.2)1−xTixO3−δ (x = 0, 0.05, and 0.1) cathode materials for proton-conducting solid oxide fuel cells. Solid State Ionics 214:1–5

    Article  CAS  Google Scholar 

  27. Wang F, Nakamura T, Yashiro K, Mizusaki J, Amezawa K (2014) Effect of Nb doping on the chemical stability of BSCF-based solid solutions. Solid State Ionics 262:719–723

    Article  CAS  Google Scholar 

  28. Egorova YV, Scherb T, Schumacher G, Bouwmeester HJM, Filatova EO (2015) Soft X-ray absorption spectroscopy study of (Ba0.5Sr0.5)(Co0.8Fe0.2)1−xNbxO3−δ with different content of Nb (5%–20%). J Alloys Compd 650:848–852

    Article  CAS  Google Scholar 

  29. Meffert M, Störmer H, Gerthsen D (2016) Dopant-site determination in Y- and Sc-doped (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ by atom location by channeling enhanced microanalysis and the role of dopant site on secondary phase formation. Microsc Microanal 22(1):113–121

    Article  CAS  Google Scholar 

  30. Stadelmann P (2003) Image analysis and simulation software in transmission electron microscopy. Microsc Microanal 9(S03):60–61

    Article  Google Scholar 

  31. Ting V, Liu Y, Norén L, Withers RL, Goossens DJ, James M, Ferraris C (2004) A structure, conductivity and dielectric properties investigation of A3CoNb2O9 (A = Ca2+, Sr2+, Ba2+) triple perovskites. J Solid State Chem 177(12):4428–4442

    Article  CAS  Google Scholar 

  32. Yoshii K (2000) Magnetic transition in the perovskite Ba2CoNbO6. J Solid State Chem 151(2):294–297

    Article  CAS  Google Scholar 

  33. Arnold M, Wang H, Feldhoff A (2007) Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. J Membr Sci 293(1–2):44–52

    Article  CAS  Google Scholar 

  34. Yan A, Maragou V, Arico A, Cheng M, Tsiakaras P (2007) Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode SOFC II. The effect of CO2 on the chemical stability. Appl Catal B 76(3–4):320–327

    Article  CAS  Google Scholar 

  35. Yi J, Schroeder M, Weirich T, Mayer J (2010) Behavior of Ba(Co, Fe, Nb)O3−δ perovskite in CO2-containing atmospheres: degradation mechanism and materials design. Chem Mater 22(23):6246–6253

    Article  CAS  Google Scholar 

  36. Almar L, Störmer H, Meffert M, Szász J, Wankmüller F, Gerthsen D, Ivers-Tiffée E (2018) Improved phase stability and CO2 poisoning robustness of Y-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ SOFC cathodes at intermediate temperatures. ACS Appl. Energy Mater. 1(3):1316–1327

    Article  CAS  Google Scholar 

  37. Jeong NC, Lee JS, Tae EL, Lee YJ, Yoon KB (2008) Acidity scale for metal oxides and Sanderson’s electronegativities of lanthanide elements. Angew Chem Int Ed Engl 47(52):10128–10132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding of this project by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). We thank Moritz Berner and Felix Kullmann for assistance with the electrical conductivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Weber.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, V., Meffert, M., Wagner, S. et al. Influence of B-site doping with Ti and Nb on microstructure and phase constitution of (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ. J Mater Sci 55, 947–966 (2020). https://doi.org/10.1007/s10853-019-04102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04102-6

Navigation