Skip to main content

Advertisement

Log in

Template-free synthesis of LiV3O8 hollow microspheres as positive electrode for Li-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of hierarchical micro-/nanostructures has received great attention in the field of electrochemical energy storage and conversion. In this report, we demonstrate a template-free synthesis of LiV3O8 hollow microspheres from vanadium ethylene glycolate intermediate, which in turn was obtained by a facile solvothermal route. Evaluation of morphological features with FE-SEM and HR-TEM shows hollow spheres of size 1.8 ± 0.1 µm diameters with wall thickness and void size of 200 ± 20 nm and 1.5 ± 0.1 µm, respectively. Powder X-ray diffraction confirms that both the intermediate and LiV3O8 hollow spheres are highly crystalline without any impurity phase. Tested as a positive electrode in lithium-ion batteries, the LiV3O8 hollow spheres constructed electrode shows a discharge capacity of 304 mAh g−1 at 0.1 C rate and 246 mAh g−1 at 1 C rate during the first discharge. More importantly, LiV3O8 electrode delivers stable cycle-life performance with a specific capacity of 156 mAh g−1 after 300 (dis)charges at 1 C rate. The present hollow LiV3O8 structures would be expected to offer additional active sites, void space to counter volume expansion, and thin-shell structures to provide shortest path for Li+ ion/electron transport, thereby enhancing the cycling stability and rate performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Braithwaite JS, Catlow CRA, Gale JD, Harding JH (1999) Lithium intercalation into vanadium pentoxide: a theoretical study. Chem Mater 11:1990–1998. https://doi.org/10.1021/cm980735r

    Article  CAS  Google Scholar 

  2. Chae OB, Kim J, Park I, Jeong H, Ku JH, Ryu JH, Kang K, Oh SM (2014) Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem Mater 26:5874–5881. https://doi.org/10.1021/cm502268u

    Article  CAS  Google Scholar 

  3. Liu M, Su B, Tang Y, Jiang X, Yu A (2017) Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv Energy Mater 7:1700885. https://doi.org/10.1002/aenm.201700885

    Article  CAS  Google Scholar 

  4. Qiao YQ, Tu JP, Wang XL, Zhang J, Yu YX, Gu CD (2011) Self-assembled synthesis of hierarchical waferlike porous Li–V–O composites as cathode materials for lithium ion batteries. J Phys Chem C 115:25508–25518. https://doi.org/10.1021/jp2080176

    Article  CAS  Google Scholar 

  5. West K, Zachau-Christiansen B, Skaarup S, Said Y, Barker J, Olsen II, Pynenburg R, Koksbang R (1996) Comparison of LiV3O8 cathode materials prepared by different methods. J Electrochem Soc 143:820. https://doi.org/10.1149/1.1836543

    Article  CAS  Google Scholar 

  6. Sarkar S, Banda H, Mitra S (2013) High capacity lithium-ion battery cathode using LiV3O8 nanorods. Electrochim Acta 99:242–252. https://doi.org/10.1016/j.electacta.2013.03.083

    Article  CAS  Google Scholar 

  7. Wadsley AD (1957) Crystal chemistry of non-stoichiometric pentavalent vanadium oxides: crystal structure of Li1+xV3O8. Acta Crystallogr 10:261–267. https://doi.org/10.1107/S0365110X57000821

    Article  CAS  Google Scholar 

  8. Pan A, Liu J, Zhang J-G, Cao G, Xu W, Nie Z, Jie X, Choi D, Arey BW, Wang C, Liang S (2011) Template free synthesis of LiV 3 O 8 nanorods as a cathode material for high-rate secondary lithium batteries. J Mater Chem 21:1153–1161. https://doi.org/10.1039/C0JM02810J

    Article  CAS  Google Scholar 

  9. Xu HY, Wang H, Song ZQ, Wang YW, Yan H, Yoshimura M (2004) Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochim Acta 49:349–353. https://doi.org/10.1016/j.electacta.2003.08.017

    Article  CAS  Google Scholar 

  10. Chen Z, Xu F, Cao S, Li Z, Yang H, Ai X, Cao Y (2017) High rate, long lifespan LiV3 O8 nanorods as a cathode material for lithium-ion batteries. Small 13:1603148. https://doi.org/10.1002/smll.201603148

    Article  CAS  Google Scholar 

  11. Liu H, Wang Y, Wang K, Wang K, Zhou H (2009) Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J Power Sources 192:668–673. https://doi.org/10.1016/j.jpowsour.2009.03.066

    Article  CAS  Google Scholar 

  12. Huang S, Wang XL, Lu Y, Jian XM, Zhao XY, Tang H, Cai JB, Gu CD, Tu JP (2014) Facile synthesis of cookies-shaped LiV3O8 cathode materials with good cycling performance for lithium-ion batteries. J Alloys Compd 584:41–46. https://doi.org/10.1016/j.jallcom.2013.09.034

    Article  CAS  Google Scholar 

  13. Wang H, Ren Y, Wang Y, Wang W, Liu S (2012) Synthesis of LiV3O8 nanosheets as a high-rate cathode material for rechargeable lithium batteries. CrystEngComm 14:2831. https://doi.org/10.1039/c2ce06326c

    Article  CAS  Google Scholar 

  14. Heli H, Yadegari H, Jabbari A (2011) Investigation of the Lithium Intercalation Behavior of Nanosheets of LiV3 O8 in an Aqueous Solution. J Phys Chem C 115:10889–10897. https://doi.org/10.1021/jp201382n

    Article  CAS  Google Scholar 

  15. Tan H, Rui X, Sun W, Yan Q, Lim TM (2015) Vanadium-based nanostructure materials for secondary lithium battery applications. Nanoscale 7:14595–14607. https://doi.org/10.1039/c5nr04126k

    Article  CAS  Google Scholar 

  16. Ren W, Zheng Z, Luo Y, Chen W, Niu C, Zhao K, Yan M, Zhang L, Meng J, Mai L (2015) An electrospun hierarchical LiV 3 O 8 nanowire-in-network for high-rate and long-life lithium batteries. J Mater Chem A 3:19850–19856. https://doi.org/10.1039/c5ta04643b

    Article  CAS  Google Scholar 

  17. Nair VS, Cheah YL, Madhavi S (2014) Symmetric aqueous rechargeable lithium battery using Na 1.16 V 3 O 8 nanobelts electrodes for safe high volume energy storage applications. J Electrochem Soc 161:A256–A263. https://doi.org/10.1149/2.025403jes

    Article  CAS  Google Scholar 

  18. Mo R, Du Y, Zhang N, Rooney D, Sun K (2013) In situ synthesis of LiV3O8 nanorods on graphene as high rate-performance cathode materials for rechargeable lithium batteries. Chem Commun 49:9143–9145. https://doi.org/10.1039/c3cc43975e

    Article  CAS  Google Scholar 

  19. Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019. https://doi.org/10.1002/adma.200800854

    Article  CAS  Google Scholar 

  20. Sasidharan M, Nakashima K (2014) Core–shell–corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres. Acc Chem Res 47:157–167. https://doi.org/10.1021/ar4001026

    Article  CAS  Google Scholar 

  21. Cao A-M, Hu J-S, Liang H-P, Wan L-J (2005) Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chemie Int Ed 44:4391–4395. https://doi.org/10.1002/anie.200500946

    Article  CAS  Google Scholar 

  22. Bin WuH, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542. https://doi.org/10.1039/c2nr11966h

    Article  CAS  Google Scholar 

  23. Pan A, Zhu T, Bin WuH, Lou XW (2013) Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability. Chem A Eur J 19:494–500. https://doi.org/10.1002/chem.201203596

    Article  CAS  Google Scholar 

  24. Pan A, Bin WuH, Yu L, Lou XWD (2013) Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew Chem Int Ed 52:2226–2230. https://doi.org/10.1002/anie.201209535

    Article  CAS  Google Scholar 

  25. Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K (2012) V2O5 hollow nanospheres: a lithium intercalation host with good rate capability and capacity retention. J Electrochem Soc 159:A618–A621. https://doi.org/10.1149/2.082205jes

    Article  CAS  Google Scholar 

  26. Liu J, Zhou Y, Wang J, Pan Y, Xue D (2011) Template-free solvothermal synthesis of yolk-shell V 2O 5 microspheres as cathode materials for Li-ion batteries. Chem Commun 47:10380–10382. https://doi.org/10.1039/c1cc13779d

    Article  CAS  Google Scholar 

  27. Liu J, Liu W, Wan Y, Ji S, Wang J, Zhou Y (2012) Facile synthesis of layered LiV3O8 hollow nanospheres as superior cathode materials for high-rate Li-ion batteries. RSC Adv 2:10470. https://doi.org/10.1039/c2ra20969a

    Article  CAS  Google Scholar 

  28. Thamodaran P, Kesavan T, Vivekanantha M, Senthilkumar B, Barpanda P, Sasidharan M (2019) Operando structural and electrochemical investigation of Li1.5V3O8 nanorods in li-ion batteries. ACS Appl Energy Mater 2:852–859. https://doi.org/10.1021/acsaem.8b01915

    Article  CAS  Google Scholar 

  29. Bonino F, Panero S, Pasquali M, Pistoia G (1995) Rechargeable lithium batteries based on Li1 + xV3O8 thin films. J Power Sources 56:193–196. https://doi.org/10.1016/0378-7753(95)80033-D

    Article  CAS  Google Scholar 

  30. Tanguy F, Gaubicher J, Guyomard D (2010) Capacity fading on cycling nano size grains of Li1.1V3O8, electrochemical investigation. Electrochim Acta 55:3979–3986. https://doi.org/10.1016/j.electacta.2009.12.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of New and Renewable Energy (MNRE), Govt. of India, for financial assistance (No. 31/03/2014-15/PVSE-R&D). The authors thank SRM SCIF and Nanotechnology Research Centre, SRMIST, for providing facility for FE-SEM and HR-TEM analysis. T. P. thanks Council of Scientific and Industrial Research (CSIR) for providing senior research fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Sasidharan.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partheeban, T., Sasidharan, M. Template-free synthesis of LiV3O8 hollow microspheres as positive electrode for Li-ion batteries. J Mater Sci 55, 2155–2165 (2020). https://doi.org/10.1007/s10853-019-04086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04086-3

Navigation