Skip to main content

Advertisement

Log in

Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) have tremendous potential in biological imaging due to their bright visible photoluminescence mission. However, the tedious preparation procedures and potential toxicity of GQDs greatly limit their application in biological field. Here, highly biocompatible GQDs (HGQDs) have been successfully prepared only by glucose in aqueous solution. Compared with GQDs prepared from conventional methods (CGQDs), the cytotoxicity of HGQDs reduced by more than 60%, and the flow cytometric analysis of the normal cells treated with HGQDs showed that the early and late apoptotic rate reduced by more than 72% and 40%, respectively. In vitro fluorescence imaging showed that both cells and bacteria could be imaged by HGQDs, and the morphology of cells and bacteria could be kept to a maximum extent. A long-term in vivo study revealed that no obvious organ (heart, liver, spleen, lung and kidney) damage or lesions were observed, and the blood–brain barrier (BBB) could be overcome, which provides the possibility for treatment and diagnosis of brain-related diseases. With adequate studies of biocompatibility, both in vitro and in vivo, HGQDs may be considered for further biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86

    CAS  Google Scholar 

  2. Mehta VN, Jha S, Kailasa SK (2014) One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng, C 38:20–27

    CAS  Google Scholar 

  3. Şenel B, Demir N, Büyükköroğlu G, Yıldız M (2019) Graphene quantum dots: synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharm J 27:846–858

    Google Scholar 

  4. Lee J, Feng X, Chen O, Bawendi MG, Huang J (2018) Stable, small, specific, low-valency quantum dots for single-molecule imaging. Nanoscale 10:4406–4414

    CAS  Google Scholar 

  5. Zhai Y, Shen F, Zhang X, Jing P, Li D, Yang X, Zhou D, Xu X, Qu S (2019) Synthesis of green emissive carbon dots@ montmorillonite composites and their application for fabrication of light-emitting diodes and latent fingerprints markers. J Colloid Interface Sci 554:344–352

    CAS  Google Scholar 

  6. Yuan L, Lin W, Zheng K, He L, Huang W (2013) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42:622–661

    CAS  Google Scholar 

  7. Tsoi KM, Dai Q, Alman BA, Chan WC (2012) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46:662–671

    Google Scholar 

  8. Lan M, Zhang J, Zhu X, Wang P, Chen X, Lee CS, Zhang W (2015) Highly stable organic fluorescent nanorods for living-cell imaging. Nano Res 8:2380–2389

    CAS  Google Scholar 

  9. Ganganboina AB, Chowdhury AD, Doong RA (2017) N-doped graphene quantum dots-decorated V2O5 nanosheet for fluorescence turn off-on detection of cysteine. ACS Appl Mater Interfaces 10:614–624

    Google Scholar 

  10. Yuan A, Lei H, Xi F, Liu J, Qin L, Chen Z, Dong X (2019) Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic removal of antibiotics. J Colloid Interface Sci 548:56–65

    CAS  Google Scholar 

  11. Yan X, Cui X, Li LS (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132:5944–5945

    CAS  Google Scholar 

  12. Liu Y, Xu LP, Dai W, Dong H, Wen Y, Zhang X (2015) Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale 7:19060–19065

    CAS  Google Scholar 

  13. Xiao S, Zhou D, Luan P, Gu B, Feng L, Fan S, Liao W, Fang W, Yang L, Tao E, Guo R (2016) Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 106:98–110

    CAS  Google Scholar 

  14. Dong J, Wang K, Sun L, Sun B, Yang M, Chen H, Wang Y, Sun J, Dong L (2018) Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens Actuators B 256:616–623

    CAS  Google Scholar 

  15. De S, Patra K, Ghosh D, Dutta K, Dey A, Sarkar G, Maiti J, Basu A, Rana D, Chattopadhyay D (2018) Tailoring the efficacy of multifunctional biopolymeric graphene oxide quantum dot-based nanomaterial as Nanocargo in Cancer therapeutic application. ACS Biomater Sci Eng 4:514–531

    CAS  Google Scholar 

  16. Tabish TA, Scotton CJ, Ferguson DCJ, Lin L, der Veen AV, Lowry S, Ali M, Jabeen F, Ali M, Winyard PG, Zhang S (2018) Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 13:1923–1937

    Google Scholar 

  17. Hong GL, Zhao HL, Deng HH, Yang HJ, Peng HP, Liu YH, Chen W (2018) Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging. Int J Nanomed 13:4807–4815

    CAS  Google Scholar 

  18. Hai X, Feng J, Chen X, Wang J (2018) Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. J Mater Chem B 6:3219–3234

    CAS  Google Scholar 

  19. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Vithayathil SA (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849

    CAS  Google Scholar 

  20. Chua CK, Sofer Z, Simek P, Jankovsky O, Klimova K, Bakardjieva S (2015) Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9:2548–2555

    CAS  Google Scholar 

  21. Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2012) Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J Mater Chem 22:12465–12467

    CAS  Google Scholar 

  22. Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, Lee YK (2013) In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7:6858–6867

    CAS  Google Scholar 

  23. Shin Y, Park J, Hyun D, Yang J, Lee JH, Kim JH, Lee H (2015) Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources. Nanoscale 7:5633–5637

    CAS  Google Scholar 

  24. Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen Z, Li Z, Wu M (2012) Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem 22:3314–3318

    CAS  Google Scholar 

  25. Lin L, Zhang S (2012) Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun 48:10177–10179

    CAS  Google Scholar 

  26. Li Q, Zhang S, Dai L, Li LS (2012) Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J Am Chem Soc 134:18932–18935

    CAS  Google Scholar 

  27. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780

    Google Scholar 

  28. Ananthanarayanan A, Wang X, Routh P, Sana B, Lim S, Kim DH, Lim KH, Li J, Chen P (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24:3021–3026

    CAS  Google Scholar 

  29. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX (2013) Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1:4676–4684

    CAS  Google Scholar 

  30. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    CAS  Google Scholar 

  31. Wang G, Xu A, He P, Guo Q, Liu Z, Wang Z, Li J, Hu X, Wang Z, Chen D, Wang Y, Yang S, Ding G (2019) Green preparation of lattice phosphorus doped graphene quantum dots with tunable emission wavelength for bio-imaging. Mater Lett 242:156–159

    CAS  Google Scholar 

  32. Halder A, Godoy-Gallardo M, Ashley J, Feng X, Zhou T, Hosta-Rigau L, Sun Y (2018) One-pot green synthesis of biocompatible graphene quantum dots and their cell uptake studies. ACS Appl Biol Mater 1:452–461

    CAS  Google Scholar 

  33. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860

    CAS  Google Scholar 

  34. Chen W, Li D, Tian L, Xiang W, Wang T, Hu W, Hu Y, Chen S, Chen J, Dai Z (2018) Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem 20:4438–4442

    CAS  Google Scholar 

  35. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738

    Google Scholar 

  36. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    CAS  Google Scholar 

  37. Tong L, Qiu F, Zeng T, Long J, Yang J, Wang R, Zhang J, Wang C, Sun T, Yang Y (2017) Recent progress in the preparation and application of quantum dots/graphene composite materials. RSC Adv 7:47999–48018

    CAS  Google Scholar 

  38. Wu C, Wang C, Han T, Zhou X, Guo S (2013) Zhang J Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthc Mater 2:1613–1619

    CAS  Google Scholar 

  39. Kim D, Yoo JM, Hwang H, Lee J, Lee SH, Yun SP, Park MJ, Lee M, Choi S, Kwon SH, Lee S, Kwon SH, Kim S, Park YJ, Kinoshita M, Lee YH, Shin S, Paik SR, Lee SJ, Hong BH, Ko HS (2018) Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat Nanotechnol 13:812–818

    CAS  Google Scholar 

  40. Bayat A, Saievar-Iranizad E (2017) Synthesis of green-photoluminescent single layer graphene quantum dots: determination of HOMO and LUMO energy states. J Lumin 192:180–183

    CAS  Google Scholar 

  41. Long L, Niu X, Yan K, Zhou G, Wang J, Wu X, Chu PK (2018) Highly fluorescent and stable black phosphorus quantum dots in water. Small 14:1803132

    Google Scholar 

  42. Niu F, Xu Y, Liu M, Sun J, Guo P, Liu J (2016) Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging. Nanoscale 8:5470–5477

    CAS  Google Scholar 

  43. Teng Z, Wang C, Tang Y, Li W, Bao L, Zhang X, Su X, Zhang F, Zhang J, Wang S, Zhao D, Lu G (2018) Deformable hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. J Am Chem Soc 140:1385–1393

    CAS  Google Scholar 

  44. Anraku Y, Kuwahara H, Fukusato Y, Mizoguchi A, Ishii T, Nitta K, Matsumoto Y, Toh K, Miyata K, Uchida S, Nishina K, Osada K, Itaka K, Nishiyama N, Mizusawa H, Yamasoba T, Yokota T, Kataoka K (2017) Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat Commun 8:1001

    CAS  Google Scholar 

  45. Fan W, Lu N, Shen Z, Tang W, Shen B, Cui Z, Shan L, Yang Z, Wang Z, Jacobson O, Zhou Z, Liu Y, Hu P, Yang W, Song J, Zhang Y, Zhang L, Khashab NM, Aronova MA, Lu G, Chen X (2019) Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nat Commun 10:1241

    Google Scholar 

  46. Malina T, Poláková K, Skopalík J, Milotová V, Holá K, Havrdová M, Zbořil R (2019) Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon 152:434–443

    CAS  Google Scholar 

  47. Kang Y, Wang C, Qiao Y, Gu J, Zhang H, Peijs T, Kong J, Zhang G, Shi X (2019) Tissue-engineered trachea consisting of electrospun patterned sc-PLA/GO-g-IL fibrous membranes with antibacterial property and 3D-printed skeletons with elasticity. Biomacromol 20:1765–1776

    CAS  Google Scholar 

  48. Wang G, Guo Q, Chen D, Liu Z, Zheng X, Xu A, Yang S, Ding G (2018) Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian. ACS Appl Mater Interfaces 10:5750–5759

    CAS  Google Scholar 

  49. Ganganboina AB, Chowdhury AD, Doong RA (2017) Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochim Acta 245:912–923

    CAS  Google Scholar 

  50. Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed 51:12215–12218

    CAS  Google Scholar 

  51. Yan Y, Gong J, Chen J, Zeng Z, Huang W, Pu K, Chen P (2019) Recent advances on graphene quantum dots: from chemistry and physics to applications. Adv Mater 31:1808283

    Google Scholar 

  52. Wang XF, Wang GG, Li JB, Liu Z, Chen YX, Liu LF, Han JC (2019) Direct white emissive Cl-doped graphene quantum dots-based flexible film as a single luminophore for remote tunable UV-WLEDs. Chem Eng J 361:773–782

    CAS  Google Scholar 

  53. Markovic ZM, Ristic BZ, Arsikin KM, Klisic DG, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Kravic-Stevovic TK, Jovanovic SP, Milenkovic MM, Milivojevic DD, Bumbasirevic VZ, Dramicanin MD, Trajkovic VS (2012) Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 33:7084–7092

    CAS  Google Scholar 

  54. Jóźwiak P, Krześlak A, Wieczorek M, Lipińska A (2015) Effect of glucose on glut1-dependent intracellular ascorbate accumulation and viability of thyroid cancer cells. Nutr Cancer 67:1–9

    Google Scholar 

  55. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Elliott C, Masliah E, Ryan L, Liu E, Silverberg N (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement 14:535–562

    Google Scholar 

  56. Weinshenker D (2018) Long road to ruin: noradrenergic dysfunction in neurodegenerative disease. Trends Neurosci 41:211–223

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant Nos. 51433008, 81572252 and 31771087), Shanxi National Science Foundation (Grant No. 2018JM2031) and the Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No. ZZ2019234). We thank the Analytical and Testing Center of Northwestern Polytechnical University for equipment supporting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Hu, Jian Wang or Chaoli Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Hu, X., Guan, P. et al. Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. J Mater Sci 55, 1198–1215 (2020). https://doi.org/10.1007/s10853-019-04079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04079-2

Navigation