Skip to main content
Log in

Solvent responsive single-material inverse opal polymer actuator with structural color switching

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single-material flexible actuators that can produce non-uniform deformation in response to external stimuli have attracted considerable interests due to their facile fabrication process and excellent actuation behavior. However, the recognition of actuation state with easily perceived and detectable signal is still a challenge. In this paper, we report an actuator behavior of single-material inverse opal photonic crystal films, which are in response to a variety of solvents based on swelling/de-swelling process. The actuator exhibits improved responsiveness due to the enhanced mass transport of solvent molecules in periodic inverse opal with macroporous structure. Especially, peaks in reflective spectra and corresponding structure colors are obviously changed, providing a simple and effective optical technology for optical recognition of micro-locomotion. Based on the above characteristics, we demonstrate the potential applications of this photonic crystal actuator as solvent-driven gripper, walking device and rolling motor, showing great promise in advanced soft robot for many important intelligent areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462(7272):442–448

    CAS  Google Scholar 

  2. Studart AR (2015) Biologically inspired dynamic material systems. Angew Chem Int Edit 54(11):3400–3416

    CAS  Google Scholar 

  3. Kohlmeyer RR, Chen J (2013) Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. Angew Chem Int Edit 52(35):9234–9237

    CAS  Google Scholar 

  4. Han B, Zhang YL, Zhu L, Li Y, Ma ZC, Liu YQ, Zhang XL, Cao XW, Chen QD, Qiu CW, Sun HB (2018) Plasmonic-assisted graphene oxide artificial muscles. Adv Mater 31:e1806386

    Google Scholar 

  5. Zhang X, Yu Z, Wang C, Zarrouk D, Seo JW, Cheng JC, Buchan AD, Takei K, Zhao Y, Ager JW, Zhang J, Hettick M, Hersam MC, Pisano AP, Fearing RS, Javey A (2014) Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat Commun 5:2983

    Google Scholar 

  6. Deng J, Li JF, Chen PN, Fang X, Sun XM, Jiang YS, Weng W, Wang BJ, Peng HS (2016) Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J Am Chem Soc 138(1):225–230

    CAS  Google Scholar 

  7. Ma CX, Lu W, Yang XX, He J, Le XX, Wang L, Zhang JW, Serpe MJ, Huang YJ, Chen T (2018) Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv Funct Mater 28(7):1704568

    Google Scholar 

  8. Behl M, Kratz K, Zotzmann J, Nochel U, Lendlein A (2013) Reversible bidirectional shape-memory polymers. advanced materials 25(32):4466–4469

    CAS  Google Scholar 

  9. Ge FJ, Zhao Y (2017) A new function for thermal phase transition-based polymer actuators: autonomous motion on a surface of constant temperature. Chem Sci 8(9):6307–6312

    CAS  Google Scholar 

  10. Jin BJ, Song HJ, Jiang RQ, Song JZ, Zhao Q, Xie T (2018) Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Sci Adv 4(1):eaao3865

    Google Scholar 

  11. Hamedi MM, Campbell VE, Rothemund P, Guder F, Christodouleas DC, Bloch JF, Whitesides GM (2016) Electrically activated paper actuators. Adv Funct Mater 26(15):2446–2453

    CAS  Google Scholar 

  12. Taccola S, Greco F, Sinibaldi E, Mondini A, Mazzolai B, Mattoli V (2015) Toward a new generation of electrically controllable hygromorphic soft actuators. Adv Mater 27(10):1668–1675

    CAS  Google Scholar 

  13. Amjadi M, Sitti M (2016) High-performance multiresponsive paper actuators. ACS Nano 10(11):10202–10210

    CAS  Google Scholar 

  14. Cebers A, Erglis K (2016) Flexible magnetic filaments and their applications. Adv Funct Mater 26(22):3783–3795

    CAS  Google Scholar 

  15. Kim J, Choi SE, Lee H, Kwon S (2013) Magnetochromatic microactuators for a micropixellated color-changing surface. Adv Mater 25(10):1415–1419

    CAS  Google Scholar 

  16. Hu WQ, Lum GZ, Mastrangeli M, Sitti M (2018) Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690):81–85

    CAS  Google Scholar 

  17. Must I, Kaasik F, Poldsalu I, Mihkels L, Johanson U, Punning A, Aabloo A (2015) Ionic and capacitive artificial muscle for biomimetic soft robotics. Adv Eng Mater 17(1):84–94

    CAS  Google Scholar 

  18. Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617):451–455

    CAS  Google Scholar 

  19. Gorissen B, Chishiro T, Shimomura S, Reynaerts D, De Volder M, Konishi S (2014) Flexible pneumatic twisting actuators and their application to tilting micromirrors. Sens Actuators A 216:426–431

    CAS  Google Scholar 

  20. Wu H, Kuang MX, Cui LY, Tian D, Wang MH, Luan GY, Wang JX, Jiang L (2016) Single-material solvent-sensitive actuator from poly(ionic liquid) inverse opals based on gradient dewetting. Chem Commun 52(35):5924–5927

    CAS  Google Scholar 

  21. Zhao Q, Heyda J, Dzubiella J, Tauber K, Dunlop JWC, Yuan JY (2015) Sensing solvents with ultrasensitive porous poly(ionic liquid) actuators. Adv Mater 27(18):2913–2917

    CAS  Google Scholar 

  22. Zhao Q, Dunlop JWC, Qiu XL, Huang FH, Zhang ZB, Heyda J, Dzubiella J, Antonietti M, Yuan JY (2014) An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat Commun 5:4293

    Google Scholar 

  23. He SS, Chen PN, Qiu LB, Wang BJ, Sun XM, Xu YF, Peng HS (2015) A mechanically actuating carbon-nanotube fiber in response to water and moisture. Angew Chem Int Edit 54(49):14880–14884

    CAS  Google Scholar 

  24. Mu J, Wang G, Yan H, Li H, Wang X, Gao E, Hou C, Pham ATC, Wu L, Zhang Q, Li Y, Xu Z, Guo Y, Reichmanis E, Wang H, Zhu M (2018) Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat Commun 9(1):590

    Google Scholar 

  25. Zhang DJ, Liu J, Chen B, Zhao Y, Wang JX, Ikeda T, Jiang L (2018) A hydrophilic/hydrophobic janus inverse-opal actuator via gradient infiltration. ACS Nano 12:12149–12158

    CAS  Google Scholar 

  26. Zhang LD, Liang HR, Jacob J, Naumov P (2015) Photogated humidity-driven motility. Nat Commun 6:7429

    CAS  Google Scholar 

  27. Fu FF, Shang LR, Chen ZY, Yu YR, Zhao YJ (2018) Bioinspired living structural color hydrogels. Sci Robot 3(16):eaar8580

    Google Scholar 

  28. Yang N, Ji X, Sun J et al (2019) Photonic actuators with predefined shapes. Nanoscale 11(20):10088–10096

    CAS  Google Scholar 

  29. Wang Y, Cui H, Zhao Q, Du X (2019) Chameleon-inspired structural-color actuators. Matter 1:1–13

    Google Scholar 

  30. Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Edit 53(13):3318–3335

    CAS  Google Scholar 

  31. Dumanli AG, Savin T (2016) Recent advances in the biomimicry of structural colours. Chem Soc Rev 45(24):6698–6724

    CAS  Google Scholar 

  32. Zhao YJ, Xie ZY, Gu HC, Zhu C, Gu ZZ (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41(8):3297–3317

    CAS  Google Scholar 

  33. Zhang YQ, Fu QQ, Ge JP (2015) Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum. Nat Commun 6:7510

    CAS  Google Scholar 

  34. Lim HS, Lee JH, Walish JJ, Thomas EL (2012) Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano 6(10):8933–8939

    CAS  Google Scholar 

  35. Xing HH, Li J, Shi Y, Guo JB, Wei J (2016) Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl Mater Interfaces 8(14):9440–9445

    CAS  Google Scholar 

  36. Yetisen AK, Montelongo Y, Vasconcellos FD, Martinez-Hurtado JL, Neupane S, Butt H, Qasim MM, Blyth J, Burling K, Carmody JB, Evans M, Wilkinson TD, Kubota LT, Monteiro MJ, Lowe CR (2014) Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett 14(6):3587–3593

    CAS  Google Scholar 

  37. Qin M, Huang Y, Li YN, Su M, Chen BD, Sun H, Yong PY, Ye CQ, Li FY, Song YL (2016) A rainbow structural-color chip for multisaccharide recognition. Angew Chem Int Edit 55(24):6911–6914

    CAS  Google Scholar 

  38. O’Dwyer C (2016) Color-coded batteries—electro-photonic inverse opal materials for enhanced electrochemical energy storage and optically encoded diagnostics. Adv Mater 28(27):5681–5688

    Google Scholar 

  39. Fang Y, Ni YL, Leo SY, Taylor C, Basile V, Jiang P (2015) Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat Commun 6:7416

    CAS  Google Scholar 

  40. Chen ZY, Fu FF, Yu YR, Wang H, Shang YX, Zhao YJ (2019) Cardiomyocytes-actuated morpho butterfly wings. Adv Mater 31(8):1805431

    Google Scholar 

  41. Niu W, Qu L, Lyv R, Zhang S (2017) Reconfigurable photonic crystals with optical bistability enabled by “cold” programming and thermo-recoverable shape memory polymers. RSC Adv 7(36):22461–22467

    CAS  Google Scholar 

  42. Niu W, Zhao K, Qu L, Zhang S (2018) Rewritable and highly stable photonic patterns for optical storage and display enabled by direct-pressure-programmed shape memory photonic crystals. J Mater Chem C 6(31):8385–8394

    CAS  Google Scholar 

  43. Lee SY, Kim SH, Hwang H, Sim JY, Yang SM (2014) Controlled pixelation of inverse opaline structures towards reflection-mode displays. Adv Mater 26(15):2391–2397

    CAS  Google Scholar 

  44. Fang Y, Ni YL, Choi B, Leo SY, Gao J, Ge B, Taylor C, Basile V, Jiang P (2015) Chromogenic photonic crystals enabled by novel vapor-responsive shape-memory polymers. Adv Mater 27(24):3696–3704

    CAS  Google Scholar 

  45. Stein A, Wilson BE, Rudisill SG (2013) Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals. Chem Soc Rev 42(7):2763–2803

    CAS  Google Scholar 

  46. Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater 20(16):2565–2578

    CAS  Google Scholar 

  47. Coukouma AE, Asher SA (2018) Increased volume responsiveness of macroporous hydrogels. Sens Actuators B Chem 255:2900–2903

    CAS  Google Scholar 

  48. Burgess IB, Koay N, Raymond KP, Kolle M, Loncar M, Aizenberg J (2012) Wetting in color: colorimetric differentiation of organic liquids with high selectivity. ACS Nano 6(2):1427–1437

    CAS  Google Scholar 

  49. Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Edit 50(7):1492–1522

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Key Program of National Natural Science Foundation of China (21536002), National Natural Science Foundation of China (21506023), Natural Science Foundation of Liaoning Province (20180550501), the Fund for innovative research groups of the National Natural Science Fund Committee of Science (21421005), Innovation Research Team in University (IRT_13R06) and the Fundamental Research Funds for the Central Universities (DUT19JC14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Niu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 777 kb)

Supplementary material 2 (MP4 16404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Niu, W., Zhang, S. et al. Solvent responsive single-material inverse opal polymer actuator with structural color switching. J Mater Sci 55, 817–827 (2020). https://doi.org/10.1007/s10853-019-04055-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04055-w

Navigation