Advertisement

Journal of Materials Science

, Volume 55, Issue 2, pp 738–747 | Cite as

Drug self-gating fluorescent nanoparticles for pH-responsive doxorubicin delivery

  • Guoling LiEmail author
  • Bo Yang
  • Chuantao Gu
Materials for life sciences
  • 607 Downloads

Abstract

Intelligent drug delivery systems have attracted great attention in the field of biomedicine and cancer diagnosis. In this work, a drug delivery system that can be gated by doxorubicin itself and together with pH-responsive ability has been designed and prepared based on the upconversion nanoparticles. The drug delivery system is a special core–shell structure, consisting of upconversion nanoparticle core and mesoporous silica shell. The new system tactfully bypasses the use of auxiliary capping agents and exhibits desirable drug release at pH = 5, enhancing HeLa cells inhibition. The introduction of Schiff base plays a key role in the process of achieving pH-responsive drug release. Moreover, upconversion nanoparticles could emit bright yellow-green fluorescence (540 nm) under the irradiation of near-infrared light (980 nm) for in vivo bioimaging. This characteristic provides the possibility of locating tumor tissues and real-time tracing drug delivery.

Notes

Acknowledgements

Bo Yang and Guoling Li contributed equally in this work. This work is financially supported by National Natural Science Foundation of China (51804174), Natural Science Foundation of Shandong Province (ZR2017BEE010), and General Financial Grant from China Postdoctoral (2017M612203).

Supplementary material

10853_2019_4020_MOESM1_ESM.docx (258 kb)
Supplementary material 1 (DOCX 257 kb)

References

  1. 1.
    Zelikin AN, Ehrhardt C, Healy AM (2016) Materials and methods for delivery of biological drugs. Nat Chem 8:997–1007CrossRefGoogle Scholar
  2. 2.
    Sun Q, Zhou Z, Qiu N, Shen Y (2017) Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater 29:16066281–160662818Google Scholar
  3. 3.
    Juère E, Florek J, Bouchoucha M, Jambhrunkar S, Wong KY, Popat A, Kleitz F (2017) In vitro dissolution, cellular membrane permeability, and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Mol Pharm 14:4431–4441CrossRefGoogle Scholar
  4. 4.
    Pelaz B, Alexiou C, Alvarez-Puebla RA et al (2017) Diverse applications of nanomedicine. ACS Nano 11:2313–2381CrossRefGoogle Scholar
  5. 5.
    Ren D, Kratz F, Wang S (2014) Engineered drug-protein nanoparticle complexes for folate receptor targeting. Biochem Eng J 89:33–41CrossRefGoogle Scholar
  6. 6.
    Dai Z, Leung H, Lo P (2017) Stimuli-responsive self-assembled DNA nanomaterials for biomedical applications. Small 13:16028811-16Google Scholar
  7. 7.
    Yang D, Yang G, Gai S, He F, Li C, Yang P (2017) Multifunctional theranostics for dual-modal photodynamic synergistic therapy via stepwise water splitting. ACS Appl Mater Interfaces 9:6829–6838CrossRefGoogle Scholar
  8. 8.
    Neubergera K, Boddupallia A, Bratlie KM (2018) Effects of arginine-based surface modifications of liposomes for drug delivery in Caco-2 colon carcinoma cells. Biochem Eng J 139:8–14CrossRefGoogle Scholar
  9. 9.
    Sun K, You C, Wang S et al (2018) NIR stimulus-responsive core–shell type nanoparticles based on photothermal conversion for enhanced antitumor efficacy through chemo-photothermal therapy. Nanotechnology 29:285302CrossRefGoogle Scholar
  10. 10.
    Du K, Xu X, Yao S, Lei P, Dong L, Zhang M, Feng J, Zhang H (2018) Enhanced upconversion luminescence and controllable phase/shape of NaYF4:Yb/Er crystals through Cu2+ ion doping. CrystEngComm 20:1945–1953CrossRefGoogle Scholar
  11. 11.
    Wang X, Xu J, Yang D, Sun C, Sun Q, He F, Gai S, Zhong C, Li C, Yang P (2018) Fe3O4@MIL-100(Fe)-UCNPs heterojunction photosensitizer: rational design and application in near infrared light mediated hypoxic tumor therapy. Chem Eng J 354:1141–1152CrossRefGoogle Scholar
  12. 12.
    Feng LL, Gai SL, He F, Dai YL, Zhong CN, Yang PP, Lin J (2017) Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biomaterials 147:39–52CrossRefGoogle Scholar
  13. 13.
    Feng LL, He F, Liu B, Yang G, Gai SL, Yang PP, Li CX, Dai YL, Lv RC, Lin J (2016) g-C3N4 coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging. Chem Mater 28:7935–7946CrossRefGoogle Scholar
  14. 14.
    Feng LL, Wang CQ, Li CX, Gai SL, He F, Li RM, An GH, Zhong CN, Dai YL, Yang ZL, Yang PP (2018) Multifunctional theranostic nanoplatform based on Fe-mTa2O5@CuS-ZnPc/PCM for bimodal imaging and synergistically enhanced phototherapy. Inorg Chem 57:4864–4876CrossRefGoogle Scholar
  15. 15.
    Feng L, He F, Dai Y, Gai S, Zhong C, Li C, Yang P (2017) Multifunctional UCNPs@MnSiO3@g-C3N4 nano-platform: improved ROS generation and reduced glutathione levels for highly efficient photodynamic therapy. Biomater Sci 5:2456–2467CrossRefGoogle Scholar
  16. 16.
    Chan M, Liu R (2017) Advanced sensing, imaging, and therapy nanoplatforms based on Nd3+-doped nanoparticle composites exhibiting upconversion induced by 808 nm near-infrared light. Nanoscale 9:18153–18168CrossRefGoogle Scholar
  17. 17.
    Yang GX, Yang D, Yang PP, Lv RC, Li CX, Zhong CN, He F, Gai SL, Lin J (2015) A single 808 nm near-infrared light-mediated multiple imaging and photodynamic therapy based on titania coupled upconversion nanoparticles. Chem Mater 27:7957–7968CrossRefGoogle Scholar
  18. 18.
    Wang F, Qu X, Liu D, Ding C, Zhang C, Xian Y (2018) Upconversion nanoparticles-MoS2 nanoassembly as a fluorescent turn-on probe for bioimaging of reactive oxygen species in living cells and zebrafish. Sens Actuators, B 274:180–187CrossRefGoogle Scholar
  19. 19.
    Xiao P, Ye S, Liao H, Wang D (2018) Magnetic-optical bifunctional properties of sub-20 nm beta-NaYF4:Yb3(+), Er3+ @NaGdF4 core-shell nanocrystals. J Alloys Compd 767:775–781CrossRefGoogle Scholar
  20. 20.
    Peruzynska M, Cendrowski K, Barylak M et al (2015) Study on size effect of the silica nanospheres with solid core and mesoporous shell on cellular uptake. Biomed Mater 10:065012CrossRefGoogle Scholar
  21. 21.
    Choi E, Kwak M, Jang B, Piao Y (2013) Highly monodisperse rattle-structured nanomaterials with gold nanorod core-mesoporous silica shell as drug delivery vehicles and nanoreactors. Nanoscale 5:151–154CrossRefGoogle Scholar
  22. 22.
    Jayakumar MKG, Bansal A, Li B, Zhang Y (2015) Mesoporous silica-coated upconversion nanocrystals for near infrared light-triggered control of gene expression in zebrafish. Nanomedicine 10:1051–1061CrossRefGoogle Scholar
  23. 23.
    Liu S, Tian B, Wu S, Wang Y, Huang J, Gao B, Wang Z (2018) pH-sensitive polymer-gated multifunctional upconversion NaYF4:Yb/Er@mSiO(2) nanocomposite for oral drug delivery. Microporous Mesoporous Mater 264:151–158CrossRefGoogle Scholar
  24. 24.
    Zhou L, Chen Z, Dong K, Yin M, Ren J, Qu X (2014) DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. Adv Mater 26:2424–2430CrossRefGoogle Scholar
  25. 25.
    Bansal A, Gnanasammandhan MK, Zhang Y (2014) Multi-functional fluorescent upconversion nanocrystals for simultaneous imaging and delivery of peptide toxins. Mater Appl Sens Transducers III(605):364–367Google Scholar
  26. 26.
    Lim W, Phua S, Xu H, Sreejith S, Zhao Y (2016) Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale 8:12510–12519CrossRefGoogle Scholar
  27. 27.
    Cheng Z, Chai R, Ma P, Dai Y, Kang X, Lian H (2013) Multiwalled carbon nanotubes and NaYF4:Yb3+/Er3+ nanoparticle-doped bilayer hydrogel for concurrent NIR-triggered drug release and up-conversion luminescence tagging. Langmuir 29:9573–9580CrossRefGoogle Scholar
  28. 28.
    Li C, Yang D, Ma P, Chen Y, Wu Y, Hou Z, Dai Y, Zhao J, Sui C, Lin J (2013) Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small 9:4150–4159CrossRefGoogle Scholar
  29. 29.
    Hamblin MR (2018) Upconversion in photodynamic therapy: plumbing the depths. Dalton Trans 47:8571–8580CrossRefGoogle Scholar
  30. 30.
    Gu B, Zhang QC (2018) Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv Sci 5:17006091–170060916CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringQingdao UniversityQingdaoChina

Personalised recommendations