Abstract
By means of the CRYSTAL computer program package, first-principles calculations of polar ZrO-, Ca- and O-terminated CaZrO3 (011) surfaces were performed. Our calculation results for polar CaZrO3 (011) surfaces are compared with the previous ab initio calculation results for ABO3 perovskite (011) and (001) surfaces. From the results of our hybrid B3LYP calculations, all upper-layer atoms on the ZrO-, Ca- and O-terminated CaZrO3 (011) surfaces relax inwards. The only exception from this systematic trend is outward relaxation of the oxygen atom on the ZrO-terminated CaZrO3 (011) surface. Different ZrO, Ca and O terminations of the CaZrO3 (011) surface lead to a quite different surface energies of 3.46, 1.49, and 2.08 eV. Our calculations predict a considerable increase in the Zr–O chemical bond covalency near the CaZrO3 (011) surface, both in the directions perpendicular to the surface (0.240e) as well as in the plane (0.138e), as compared to the CaZrO3 (001) surface (0.102e) and to the bulk (0.086e). Such increase in the B–O chemical bond population from the bulk towards the (001) and especially (011) surfaces is a systematic trend in all our eight calculated ABO3 perovskites.
This is a preview of subscription content, access via your institution.








References
Noguera C (2000) Polar oxide surfaces. J Phys Condens Matter 12:R367–R410
Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501
Sanna S, Schmidt WG (2017) LiNbO3 surfaces from a microscopic perspective. J Phys Condens Matter 29:413001
Dawber M, Rabe KM, Scott JF (2005) Physics of thin-film ferroelectric oxides. Rev Mod Phys 77:1083–1130
Ribeiro RAP, Andrés J, Longo E, Lazaro SR (2018) Magnetism and multiferroic properties at MnTiO3 surfaces: a DFT study. Appl Surf Sci 452:463–472
Ribeiro RAP, Lazaro SR, Gatti C (2016) The role of exchange–correlation functional on the description of multiferroic properties using density functional theory: the ATiO3 (A = Mn, Fe, Ni) case study. RSC Adv 6:101216–101225
Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang L, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R (2018) Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun 9:41
Cohen RE (1992) Origin of ferroelectricity in perovskite oxides. Nature 358:136–138
Eglitis RI, Vanderbilt D (2007) Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structure. Phys Rev B 76:155439
Eglitis RI, Vanderbilt D (2008) First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces. Phys Rev B 77:195408
Eglitis RI, Vanderbilt D (2008) Ab initio calculations of the atomic and electronic structure of CaTiO3 (001) and (011) surfaces. Phys Rev B 78:155420
Yukawa R, Ozawa K, Yamamoto S, Liu RY, Matsuda I (2015) Anisotropic effective mass approximation model to calculate multiple subband structures at wide-gap semiconductor surfaces: application to accumulation layers of SrTiO3 and ZnO. Surf Sci 641:224–230
Kronik L, Shapira Y (1999) Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 37:1–206
Zhu Y, Salvador PA, Rohrer GS (2017) Controlling the termination and photochemical reactivity of the SrTiO3 (110) surface. Phys Chem Chem Phys 19:7910–7918
Janesko BG, Jones SI (2017) Quantifying the delocalization of surface and bulk F-centers. Surf Sci 659:9–15
Kotomin EA, Eglitis RI, Maier J, Heifets E (2001) Calculations of the atomic and electronic structure for SrTiO3 perovskite thin films. Thin Solid Films 400:76–80
Koirala P, Gulec A, Marks LD (2017) Surface heterogeneity in KTaO3 (001). Surf Sci 657:15–19
Piskunov S, Eglitis RI (2015) First principles hybrid DFT calculations of BaTiO3/SrTiO3 (001) interface. Solid State Ion 274:29–33
Carrasco J, Illas F, Lopez N, Kotomin EA, Zhukovskii YF, Evarestov RA, Mastrikov YA, Piskunov S, Maier J (2006) First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3. Phys Rev B 73:064106
Li D, Zhao MH, Garra J, Kolpak AM, Rappe AM, Bonnell DA, Vohs JM (2008) Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nat Mater 7:473–477
Fong DD, Kolpak AM, Eastman JA, Streiffer SK, Fuoss PH, Stephenson GB, Thompson C, Kim DM, Choi KJ, Eom CB, Grinberg I, Rappe AM (2006) Stabilization of monodomain polarization in ultrathin PbTiO3 films. Phys Rev Lett 96:127601
Eglitis RI, Piskunov S, Zhukovskii YF (2016) Ab initio calculations of PbTiO3/SrTiO3 (001) heterostructures. Phys Status Solidi C 13:913–920
Kolpak AM, Li D, Shao R, Rappe AM, Bonnell DA (2008) Evolution of the structure and thermodynamic stability of the BaTiO3 (001) surface. Phys Rev Lett 101:036102
Piskunov S, Eglitis RI (2016) Comparative ab initio calculations of SrTiO3/BaTiO3 and SrZrO3/PbZrO3 (001) heterostructures. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 374:20–23
Gerhold S, Riva M, Yildiz B, Schmid M, Diebold U (2016) Adjusting island density and morphology of the SrTiO3 (110)-(4 × 1) surface: pulsed laser deposition combined with scanning tunnelling microscopy. Surf Sci 651:76–83
Jia W, Vikhnin VS, Liu H, Kapphan S, Eglitis R, Usvyat D (1999) Critical effects in optical response due to charge transfer vibronic excitons and their structure in perovskite like systems. J Lumin 83–84:109–113
Farlenkov AS, Ananyev MV, Eremin VA, Porotnikova NM, Kurumchin EK, Melekh BT (2016) Oxygen isotope exchange in doped calcium and barium zirconates. Solid State Ion 290:108–115
Scott JF (2000) Ferroelectric memories. Springer, Berlin
Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, Oxford
Anan’ev MV, Bershitskaya NM, Plaksin SV, Kurumchin EK (2012) Phase equilibriums, oxygen exchange kinetics and diffusion in oxides CaZr1−xScxO3−x/2−δ. Russ J Electrochem 48:879–886
Antonova EP, Ananyev MV, Porotnikova NM, Kurumchin EK (2016) Oxygen isotope exchange and electrical conductivity of CaZr1−xScxO3−x/2. J Solid State Electrochem 20:1497–1500
Lyagaeva YG, Medvedev DA, Demin AK, Yaroslavtseva TV, Plaksin SV, Porotnikova NM (2014) Specific features of preparation of dense deramic based on barium zirconate. Semiconductors 48:1353–1358
Savchin VP, Popov AI, Aksimentyeva OI, Klym H, Horbenko YY, Serga V, Moskina A, Karbovnyk I (2016) Cathodoluminescence characterization of polystyrene-BaZrO3 hybrid composites. Low Temp Phys 42:760–763
Aksimentyeva OI, Savchyn VP, Dyakonov VP, Piechota S, Horbenko YY, Opainych IY, Demchenko PY, Popov A, Szymczak H (2014) Modification of polymer-magnetic nanoparticles by luminescent and conducting substances. Mol Cryst Liq Cryst 590:35–42
Ceder G (1998) Computational materials science—predicting properties from scratch. Science 280:1099–1100
Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B (1998) Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392:694–696
Eglitis RI, Borstel G (2005) Towards a practical rechargeable 5 V Li ion battery. Phys Status Solidi A 202:R13–R15
Eglitis RI (2015) Theoretical prediction of the 5 V rechargeable Li ion battery using Li2CoMn3O8 as a cathode. Phys Scr 90:094012
Arrigoni M, Kotomin EA, Maier J (2017) First-principles study of perovskite ultrathin films: stability and confinement effects. Isr J Chem 57:509–521
Arrigoni M, Bjørnheim TS, Kotomin EA, Maier J (2016) First principles study of confinement effects for oxygen vacancies in BaZrO3 (001) ultra-thin films. Phys Chem Chem Phys 18:9902–9908
Iles N, Finocchi F, Khodja KD (2010) A systematic study of ideal and double layer reconstructions of ABO3 (001) surfaces (A = Sr, Ba; B = Ti, Zr). J Phys Condens Matter 22:305001
Aballe L, Matencio S, Foerster M, Barrena E, Sanchez F, Fontcuberta J, Ocal C (2015) Instability and surface potential modulation of self-patterned (001) SrTiO3 surfaces. Chem Mater 27:6198–6204
Goh ES, Ong LH, Yoon TL, Chew KH (2016) Structural relaxation of BaTiO3 slab with tetragonal (100) surface: ab-initio comparison of different thickness. Curr Appl Phys 16:1491–1497
Eglitis RI (2015) Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces. Appl Surf Sci 358:556–562
Zhuang HL, Ganesh P, Cooper VR, Xu H, Kent PRC (2014) Understanding the interactions between oxygen vacancies at SrTiO3 (001) surfaces. Phys Rev B 90:064106
Borstel G, Eglitis RI, Kotomin EA, Heifets E (2003) Modelling of defects and surfaces in perovskite ferroelectrics. Phys Status Solidi B 236:253–264
Lee YL, Morgan D (2015) Ab initio defect energetics of perovskite (001) surfaces for solid oxide fuel cells. A comparative study of LaMnO3 versus SrTiO3 and LaAlO3. Phys Rev B 91:195430
Luo B, Wang X, Tian E, Li G, Li L (2015) Structural and electronic properties of cubic KNbO3 (001) surfaces: a first-principles study. Appl Surf Sci 351:558–564
Eglitis RI (2013) Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ion 230:43–47
Brik MG, Ma CG, Krasnenko V (2013) First-principles calculations of the structural and electronic properties of the cubic CaZrO3 (001) surfaces. Surf Sci 608:146–153
Pilania G, Ramprasad R (2010) Adsorption of atomic oxygen on cubic PbTiO3 and LaMnO3 (001) surfaces: a density functional theory study. Surf Sci 604:1889–1893
Cord B, Courths R (1985) Electronic study of SrTiO3 (001) surfaces by photoemission. Surf Sci 162:34–38
Dejneka A, Tyunina M, Narkilahti J, Levoska J, Chvostova D, Jastribik L, Trepakov VA (2010) Tensile strain induced changes in the optical spectra of SrTiO3 epitaxial thin films. Phys Solid State 52:2082–2089
Erdman N, Poeppelmeier KR, Asta M, Warschkow O, Ellis DE, Marks LD (2002) The structure and chemistry of the TiO2 rich surface of SrTiO3 (001). Nature 419:55–58
Eglitis RI, Popov AI (2018) Systematic trends in (001) surface ab initio calculations of ABO3 perovskites. J Saudi Chem Soc 22:459–468
Eglitis RI (2014) Ab initio calculations of SrTiO3, BaTiO3, PbTiO3, CaTiO3, SrZrO3, PbZrO3 and BaZrO3 (001), (011) and (111) surfaces as well as F centers, polarons, KTN solid solutions and Nb impurities therein. Int J Mod Phys 28:1430009
Zhang JM, Cui J, Xu KW, Ji V, Man ZY (2007) Ab initio modelling of CaTiO3 (110) polar surfaces. Phys Rev B 76:115426
Heifets E, Kotomin EA, Maier J (2000) Semiempirical simulations of surface relaxation for perovskite titanates. Surf Sci 462:19–35
Bottin F, Finocchi F, Noguera C (2003) Stability and electronic structure of the (1 × 1) SrTiO3 (110) polar surfaces by first-principles calculations. Phys Rev B 68:035418
Heifets E, Goddard WA, Kotomin EA, Eglitis RI, Borstel G (2004) Ab initio calculations of the SrTiO3 (110) polar surface. Phys Rev B 69:035408
Enterkin JA, Subramanian AK, Russell BC, Castell MR, Poeppelmeier KR, Marks LD (2010) A homologous series of structures on the surface of SrTiO3 (110). Nat Mater 9:245–248
Zhang GX, Xie Y, Yu HT, Fu HG (2009) First-principles calculations of the stability and electronic properties of the PbTiO3 (110) polar surface. J Comput Chem 30:1785–1798
Zhang JM, Pang Q, Xu KW, Ji V (2009) First-principles study of the (110) polar surface of cubic PbTiO3. Comput Mater Sci 44:1360–1365
Xie Y, Yu HT, Zhang GH, Fu HG, Sun JZ (2007) First-principles investigation of stability and structural properties of the BaTiO3 (110) polar surface. J Phys Chem C 111:6343–6349
Wang J, Tang G, Wu XS (2012) Thermodynamic stability of BaTiO3 (110) surfaces. Phys Status Solidi B 249:796–800
Eglitis RI, Rohlfing M (2010) First-principles calculations of the atomic and electronic structure of SrZrO3 and PbZrO3 (001) and (011) surfaces. J Phys Condens Matter 22:415901
Chen H, Xie Y, Zhang GH, Yu HT (2014) A first-principles investigation of the stability and electronic properties of SrZrO3 (110) (1 × 1) polar terminations. J Phys Condens Matter 26:395002
Eglitis RI (2007) First principles calculations of BaZrO3 (001) and (011) surfaces. J Phys Condens Matter 19:356004
Heifets E, Ho J, Merinov B (2007) Density functional simulation of the BaZrO3 (011) surface structure. Phys Rev B 75:155431
Crosby LA, Kennedy RM, Chen BR, Wen JG, Poeppelmeier KR, Bedzyk JM, Marks LD (2016) Complex surface structure of (110) terminated strontium titanate nanododecahedra. Nanoscale 8:16606–16611
Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789
Saunders VR, Dovesi R, Roetti C, Causa N, Harrison NM, Orlando R, Zicovich-Wilson CM (2014) CRYSTAL-2009 user manual. University of Torino, Torino, Italy
Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652
Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192
Eglitis RI (2015) Theoretical modelling of the energy surface (001) and topology of CaZrO3 perovskite. Ferroelectrics 483:75–85
Tasker PW (1979) The stability of ionic crystal surfaces. J Phys C 12:4977–4984
Pojani A, Finocchi F, Noguerra C (1999) Polarity of the SrTiO3 (111) and (110) surfaces. Surf Sci 442:179–198
Catlow CRA, Stoneham AM (1983) Ionicity in solids. J Phys C Solid State Phys 16:4321–4338
Bochicchio RC, Reale HF (1993) On the nature of crystalline bonding: extension of statistical population analysis to two- and three-dimensional crystalline systems. J Phys B At Mol Opt Phys 26:4871–4883
Funding
Financial support via Latvian-Ukrainian Joint Research Project No. LV-UA/2018/2 for A. I. Popov, Latvian Council of Science Project No. 2018/2-0083 “Theoretical prediction of hybrid nanostructured photocatalytic materials for efficient water splitting” for R. I. Eglitis and J. Kleperis as well as ERAF project No. 1.1.1.1/18/A/073 for R. I. Eglitis and J. Purans is greatly acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Eglitis, R.I., Kleperis, J., Purans, J. et al. Ab initio calculations of CaZrO3 (011) surfaces: systematic trends in polar (011) surface calculations of ABO3 perovskites. J Mater Sci 55, 203–217 (2020). https://doi.org/10.1007/s10853-019-04016-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-019-04016-3