Skip to main content
Log in

Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospun nanofibrous mats own tremendous advantages and potential in membrane separation process due to their high porosity, large pore size and unique interconnected structure. However, most of membranes reported in the literature were based on phase inversion substrate, and there are few researches focused on applying electrospun nanofibrous mats on membrane separation. From this point of view, this review firstly introduces the electrospinning technology and controllable preparation of electrospun nanofibers, and then sums up the state-of-the-art applications, roles and shortcomings of electrospun nanofibrous mats in membrane separation, including microfiltration, ultrafiltration, nanofiltration and forward osmosis. As for forward osmosis, the progress, currently existing problems, improvement methods and future development directions are emphasized particularly, and a novel three-tier thin-film composite structure is put forward on the basis of dual-layer thin-film composite structure of forward osmosis membranes. It is sincerely expected that this paper can provide some clues and guidance for further research and application of electrospun nanofibers in membrane separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Goh PS, Ismail AF (2018) A review on inorganic membranes for desalination and wastewater treatment. Desalination 434:60–80

    CAS  Google Scholar 

  2. Takht Ravanchi M, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235:199–244

    CAS  Google Scholar 

  3. Zhang R, Xu X, Cao B, Li P (2018) Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination. Pet Sci 15:146–156

    CAS  Google Scholar 

  4. McGinnis RL, Elimelech M (2008) Global challenges in energy and water supply: the promise of engineered osmosis. Environ Sci Technol 42:8625–8629

    CAS  Google Scholar 

  5. Jiao W, Luo S, He Z, Liu Y (2017) Applications of high gravity technologies for wastewater treatment: a review. Chem Eng J 313:912–927

    CAS  Google Scholar 

  6. Zheng X, Zhang Z, Yu D, Chen X, Cheng R, Min S, Wang J, Xiao Q et al (2015) Overview of membrane technology applications for industrial wastewater treatment in China to increase water supply. Resour Conserv Recycl 105:1–10

    Google Scholar 

  7. Cornelissen ER, Harmsen D, de Korte KF, Ruiken CJ, Qin JJ, Oo H, Wessels LP (2008) Membrane fouling and process performance of forward osmosis membranes on activated sludge. J Membr Sci 319:158–168

    CAS  Google Scholar 

  8. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262

    CAS  Google Scholar 

  9. Kim B, Gwak G, Hong S (2017) Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S). Desalination 422:5–16

    CAS  Google Scholar 

  10. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    CAS  Google Scholar 

  11. Auchter E, Marquez J, Stevens G, Silva R, McCulloch Q, Guengerich Q, Blair A, Litchfield S et al (2018) Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems. Nanotechnology 29:215712

    Google Scholar 

  12. Kovtun O, Tomlinson ID, Bailey DM, Thal LB, Ross EJ, Harris L, Frankland MP, Ferguson RS et al (2018) Single quantum dot tracking illuminates neuroscience at the nanoscale. Chem Phys Lett 706:741–752

    CAS  Google Scholar 

  13. Cao C, Long YT (2018) Biological Nanopores: confined spaces for electrochemical single-molecule analysis. Acc Chem Res 51:331–341

    CAS  Google Scholar 

  14. Jiang B, Yang J, Rahoui N, Taloub N, Huang YD (2017) Functional polymer materials affecting cell attachment. Adv Colloid Interface Sci 250:185–194

    CAS  Google Scholar 

  15. Bock DC, Kirshenbaum KC, Wang J, Zhang W, Wang F, Wang J, Marschilok AC, Takeuchi KJ et al (2015) 2D cross sectional analysis and associated electrochemistry of composite electrodes containing dispersed agglomerates of nanocrystalline magnetite, Fe3O4. ACS Appl Mater Interfaces 7:13457–13466

    CAS  Google Scholar 

  16. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  17. Yang K, Wang J, Chen X, Zhao Q, Ghaffar A, Chen B (2018) Application of graphene-based materials in water purification: from the nanoscale to specific devices. Environ Sci Nano 5:1264–1297

    CAS  Google Scholar 

  18. Wang G, Yu D, Kelkar AD, Zhang L (2017) Electrospun nanofiber: emerging reinforcing filler in polymer matrix composite materials. Prog Polym Sci 75:73–107

    CAS  Google Scholar 

  19. Kaur S, Sundarrajan S, Rana D, Matsuura T, Ramakrishna S (2012) Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. J Membr Sci 392–393:101–111

    Google Scholar 

  20. Kaur S, Barhate R, Sundarrajan S, Matsuura T, Ramakrishna S (2011) Hot pressing of electrospun membrane composite and its influence on separation performance on thin film composite nanofiltration membrane. Desalination 279:201–209

    CAS  Google Scholar 

  21. Ma C, Ruan S, Wang J, Long D, Qiao W, Ling L (2018) Free-standing carbon nanofiber fabrics for high performance flexible supercapacitor. J Colloid Interface Sci 531:513–522

    CAS  Google Scholar 

  22. Ding Y, Hou H, Zhao Y, Zhu Z, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103

    CAS  Google Scholar 

  23. Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C 32:1711–1726

    CAS  Google Scholar 

  24. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    CAS  Google Scholar 

  25. Wang X, Hsiao BS (2016) Electrospun nanofiber membranes. Curr Opin Chem Eng 12:62–81

    Google Scholar 

  26. Zdraveva E, Fang J, Mijovic B, Lin T (2017) Electrospun nanofibers. Woodhead Publishing, Sawston, pp 267–300

    Google Scholar 

  27. Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18:5326

    CAS  Google Scholar 

  28. Kenry Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    CAS  Google Scholar 

  29. Essalhi M, Khayet M (2013) Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation. J Membr Sci 433:167–179

    CAS  Google Scholar 

  30. Tijing LD, Choi JS, Lee S, Kim SH, Shon HK (2014) Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 453:435–462

    CAS  Google Scholar 

  31. Alavarse AC, de Oliveira Silva FW, Colque JT, da Silva VM, Prieto T, Venancio EC, Bonvent JJ (2017) Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C Mater Biol Appl 77:271–281

    CAS  Google Scholar 

  32. Liu HY, Li ZM, Li KJ, Li Y, Li XW (2015) A novel method for fabrication of fascinated nanofiber yarns. Therm Sci 19:1331–1335

    Google Scholar 

  33. Bhullar SK, Rana D, Lekesiz H, Bedeloglu AC, Ko J, Cho Y, Aytac Z, Uyar T et al (2017) Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications. Mater Sci Eng C Mater Biol Appl 81:334–340

    CAS  Google Scholar 

  34. Bilad MR, Azizo AS, Wirzal MDH, Jia Jia L, Putra ZA, Nordin N, Mavukkandy MO, Jasni MJF et al (2018) Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane. J Environ Manage 223:23–28

    CAS  Google Scholar 

  35. Wan C, Cao T, Chen X, Meng L, Li L (2018) Fabrication of polyethylene nanofibrous membranes by biaxial stretching. Mater Today Commun 17:24–30

    CAS  Google Scholar 

  36. Li D, McCann JT, Xia Y, Marquez M (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89:1861–1869

    CAS  Google Scholar 

  37. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39:862–890

    CAS  Google Scholar 

  38. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425

    CAS  Google Scholar 

  39. Duft D, Achtzehn T, Muller R, Huber BA, Leisner T (2003) Coulomb fission—Rayleigh jets from levitated microdroplets. Nature 421:128

    CAS  Google Scholar 

  40. Collins RT, Jones JJ, Harris MT, Basaran OA (2008) Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat Phys 4:149–154

    CAS  Google Scholar 

  41. Shi J, Wu TF, Teng KY, Wang W, Shan MJ, Xu ZW, Lv HM, Deng H (2016) Simultaneous electrospinning and spraying toward branch-like nanofibrous membranes functionalised with carboxylated MWCNTs for dye removal. Mater Lett 166:26–29

    CAS  Google Scholar 

  42. Xu ZW, Li XH, Teng KY, Zhou BM, Ma MJ, Shan MJ, Jiao KY, Qian XM et al (2017) High flux and rejection of hierarchical composite membranes based on carbon nanotube network and ultrathin electrospun nanofibrous layer for dye removal. J Membr Sci 535:94–102

    CAS  Google Scholar 

  43. Oktay B, Kayaman-Apohan N, Erdem-Kuruca S (2014) Fabrication of nanofiber mats from electrospinning of functionalized polymers. IOP Conf Ser Mater Sci Eng 64:012011

    Google Scholar 

  44. Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58:493–497

    CAS  Google Scholar 

  45. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46:6128–6134

    CAS  Google Scholar 

  46. Geng XY, Kwon OH, Jang JH (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432

    CAS  Google Scholar 

  47. Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569

    CAS  Google Scholar 

  48. Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40:4585–4592

    CAS  Google Scholar 

  49. Wang X, Ding B, Yu J, Yang J (2011) Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting. Colloids Surf B-Biointerfaces 86:345–352

    CAS  Google Scholar 

  50. Luo CJ, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51:1654–1662

    CAS  Google Scholar 

  51. Hu J, Wang X, Ding B, Lin J, Yu J, Sun G (2011) One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net. Macromol Rapid Commun 32:1729–1734

    CAS  Google Scholar 

  52. Jayasinghe SN, Edirisinghe MJ (2005) Jet break-up in nano-suspensions during electrohydrodynamic atomization in the stable cone-jet mode. J Nanosci Nanotechnol 5:923–926

    CAS  Google Scholar 

  53. Yuan XY, Zhang YY, Dong CH, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53:1704–1710

    CAS  Google Scholar 

  54. Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13:16–27

    CAS  Google Scholar 

  55. Kong CS, Lee TH, Lee KH, Kim HS (2009) Interference between the charged jets in electrospinning of polyvinyl alcohol. J Macromol Sci Part B Phys 48:77–91

    CAS  Google Scholar 

  56. Yang GZ, Li HP, Yang JH, Wan J, Yu DG (2017) Influence of working temperature on the formation of electrospun polymer nanofibers. Nanoscale Res Lett 12:55

    Google Scholar 

  57. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37:573–578

    CAS  Google Scholar 

  58. Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    CAS  Google Scholar 

  59. Luo CJ, Stride E, Edirisinghe M (2012) Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 45:4669–4680

    CAS  Google Scholar 

  60. Husain O, Lau W, Edirisinghe M, Parhizkar M (2016) Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution. Mater Sci Eng C Mater Biol Appl 65:240–250

    CAS  Google Scholar 

  61. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412

    CAS  Google Scholar 

  62. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188

    CAS  Google Scholar 

  63. Talwar S, Krishnan AS, Hinestroza JP, Pourdeyhimi B, Khan SA (2010) Electrospun nanofibers with associative polymer-surfactant systems. Macromolecules 43:7650–7656

    CAS  Google Scholar 

  64. Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG (2003) The change of bead morphology formed on electrospun polystyrene fibers. Polymer 44:4029–4034

    CAS  Google Scholar 

  65. Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352

    CAS  Google Scholar 

  66. Jing Z, Xu XY, Chen XS, Liang QZ, Bian XC, Yang LX, Jing XB (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92:227–231

    Google Scholar 

  67. Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans Ind Appl 47:1109–1117

    CAS  Google Scholar 

  68. Chronakis IS, Grapenson S, Jakob A (2006) Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47:1597–1603

    CAS  Google Scholar 

  69. Barakat NAM, Kanjwal MA, Sheikh FA, Kim HY (2009) Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: novel strategy in the electrospinning process. Polymer 50:4389–4396

    CAS  Google Scholar 

  70. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    CAS  Google Scholar 

  71. Son WK, Youk JH, Lee TS, Park WH (2004) The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45:2959–2966

    CAS  Google Scholar 

  72. Nirmala R, Nam KT, Park SJ, Shin YS, Navamathavan R, Kim HY (2010) Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning. Appl Surf Sci 256:6318–6323

    CAS  Google Scholar 

  73. Wang X, Ding B, Yu J, Si Y, Yang S, Sun G (2011) Electro-netting: fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing. Nanoscale 3:911–915

    CAS  Google Scholar 

  74. Yan G, Yu J, Qiu Y, Yi X, Lu J, Zhou X, Bai X (2011) Self-assembly of electrospun polymer nanofibers: a general phenomenon generating honeycomb-patterned Nanofibrous Structures. Langmuir 27:4285–4289

    CAS  Google Scholar 

  75. Jarusuwannapoom T, Hongroijanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R et al (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polymer J 41:409–421

    CAS  Google Scholar 

  76. Ding B, Kim HY, Lee SC, Lee DR, Choi KJ (2002) Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning. Fibers Polymers 3:73–79

    CAS  Google Scholar 

  77. Zhang CX, Yuan XY, Wu LL, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polymer J 41:423–432

    CAS  Google Scholar 

  78. Demir MM, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43:3303–3309

    CAS  Google Scholar 

  79. Kessick R, Fenn J, Tepper G (2004) The use of AC potentials in electrospraying and electrospinning processes. Polymer 45:2981–2984

    CAS  Google Scholar 

  80. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38:963–991

    CAS  Google Scholar 

  81. Wang C, Chien HS, Hsu CH, Wang YC, Wang CT, Lu HA (2007) Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules 40:7973–7983

    CAS  Google Scholar 

  82. Kriegel C, Arrechi A, Kit K, McClements DJ, Weiss J (2008) Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit Rev Food Sci Nutr 48:775–797

    CAS  Google Scholar 

  83. Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61:988–1006

    CAS  Google Scholar 

  84. Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res Part B Appl Biomater 70B:286–296

    CAS  Google Scholar 

  85. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    CAS  Google Scholar 

  86. Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883–1890

    CAS  Google Scholar 

  87. Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    CAS  Google Scholar 

  88. Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J (2012) Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale 4:5316–5320

    CAS  Google Scholar 

  89. Wang R, Liu Y, Li B, Hsiao BS, Chu B (2012) Electrospun nanofibrous membranes for high flux microfiltration. J Membr Sci 392–393:167–174

    Google Scholar 

  90. Liu Y, Wang R, Ma H, Hsiao BS, Chu B (2013) High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer 54:548–556

    CAS  Google Scholar 

  91. Ma H, Burger C, Hsiao BS, Chu B (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282

    CAS  Google Scholar 

  92. Shen L, Yu X, Cheng C, Song C, Wang X, Zhu M, Hsiao BS (2016) High filtration performance thin film nanofibrous composite membrane prepared by electrospraying technique and hot-pressing treatment. J Membr Sci 499:470–479

    CAS  Google Scholar 

  93. Chen Z, Du X-a, Liu Y, Ju Y, Song S, Dong L (2018) A high-efficiency ultrafiltration nanofibrous membrane with remarkable antifouling and antibacterial ability. J Mater Chem A 6:15191–15199

    CAS  Google Scholar 

  94. Yung L, Ma H, Wang X, Yoon K, Wang R, Hsiao BS, Chu B (2010) Fabrication of thin-film nanofibrous composite membranes by interfacial polymerization using ionic liquids as additives. J Membr Sci 365:52–58

    CAS  Google Scholar 

  95. Wang X, Fang D, Hsiao BS, Chu B (2014) Nanofiltration membranes based on thin-film nanofibrous composites. J Membr Sci 469:188–197

    CAS  Google Scholar 

  96. Xu GR, Liu XY, Xu JM, Li L, Su HC, Zhao HL, Feng HJ (2018) High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate. Appl Surf Sci 434:573–581

    CAS  Google Scholar 

  97. Huang L, McCutcheon JR (2014) Hydrophilic nylon 6,6 nanofibers supported thin film composite membranes for engineered osmosis. J Membr Sci 457:162–169

    CAS  Google Scholar 

  98. Obaid M, Ghouri ZK, Fadali OA, Khalil KA, Almajid AA, Barakat NA (2016) Amorphous SiO2 NP-incorporated poly(vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination. ACS Appl Mater Interfaces 8:4561–4574

    CAS  Google Scholar 

  99. Tian E, Wang X, Zhao Y, Ren Y (2017) Middle support layer formation and structure in relation to performance of three-tier thin film composite forward osmosis membrane. Desalination 421:190–201

    CAS  Google Scholar 

  100. Darestani MT, Chilcott TC, Coster HGL (2014) Changing the microstructure of membranes using an intense electric field: filtration performance. J Membr Sci 449:158–168

    CAS  Google Scholar 

  101. Clark JP (2013) Membranes, microfiltration, microsieves, and more. Food Technol 67:98–103

    Google Scholar 

  102. Huang L, Manickam SS, McCutcheon JR (2013) Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor. J Membr Sci 436:213–220

    CAS  Google Scholar 

  103. Gautam AK, Lai C, Fong H, Menkhaus TJ (2014) Electrospun polyimide nanofiber membranes for high flux and low fouling microfiltration applications. J Membr Sci 466:142–150

    CAS  Google Scholar 

  104. Homaeigohar SS, Buhr K, Ebert K (2010) Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J Membr Sci 365:68–77

    CAS  Google Scholar 

  105. Wang Z, Crandall C, Sahadevan R, Menkhaus TJ, Fong H (2017) Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer 114:64–72

    CAS  Google Scholar 

  106. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

    CAS  Google Scholar 

  107. Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21:7507–7510

    CAS  Google Scholar 

  108. Kaur S, Rana D, Matsuura T, Sundarrajan S, Ramakrishna S (2012) Preparation and characterization of surface modified electrospun membranes for higher filtration flux. J Membr Sci 390–391:235–242

    Google Scholar 

  109. Philippova TS, Filippov AN (2015) Theoretical evaluation of the microfiltration membrane lifetime. Pet Chem 54:705–709

    Google Scholar 

  110. Homaeigohar S, Koll J, Lilleodden ET, Elbahri M (2012) The solvent induced interfiber adhesion and its influence on the mechanical and filtration properties of polyethersulfone electrospun nanofibrous microfiltration membranes. Sep Purif Technol 98:456–463

    CAS  Google Scholar 

  111. Homaeigohar SS, Elbahri M (2012) Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes. J Colloid Interface Sci 372:6–15

    CAS  Google Scholar 

  112. Navarro-Pardo F, Martinez-Hernandez AL, Velasco-Santos C (2016) Carbon nanotube and graphene based polyamide electrospun nanocomposites: a review. J Nanomater 2016:1–16

    Google Scholar 

  113. Abbasipour M, Khajavi R (2014) Nanofiber bundles and yarns production by electrospinning: a review. Adv Polym Technol 32:1158–1168

    Google Scholar 

  114. Sun WY, Shi J, Chen C, Li N, Xu ZW, Li J, Lv HM, Qian XM et al (2018) A review on organic-inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis. RSC Adv 8:10040–10056

    CAS  Google Scholar 

  115. Li XH, Teng KY, Shi J, Wang W, Xu ZW, Deng H, Lv HM, Li FY (2016) Electrospun preparation of polylactic acid nanoporous fiber membranes via thermal-nonsolvent induced phase separation. J Taiwan Inst Chem Eng 60:636–642

    CAS  Google Scholar 

  116. Su C, Lu C, Cao H, Tang K, Chang J, Duan F, Ma X, Li Y (2018) Fabrication and post-treatment of nanofibers-covered hollow fiber membranes for membrane distillation. J Membr Sci 562:38–46

    CAS  Google Scholar 

  117. Jianxin L, Zhijun L, Xiaofei X, Wei W, Xiaojuan W, Fengxia L (2015) Numerical investigation of the membrane fouling during microfiltration of semiconductor wastewater. Desalination Water Treat 57:4756–4768

    Google Scholar 

  118. Aussawasathien D, Teerawattananon C, Vongachariya A (2008) Separation of micron to sub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters. J Membr Sci 315:11–19

    CAS  Google Scholar 

  119. Gao W, Liang H, Ma J, Han M, Zl Chen, Zs Han, Gb Li (2011) Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination 272:1–8

    CAS  Google Scholar 

  120. Galanakis CM (2015) Separation of functional macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. Trends Food Sci Technol 42:44–63

    CAS  Google Scholar 

  121. Shi X, Tal G, Hankins NP, Gitis V (2014) Fouling and cleaning of ultrafiltration membranes: a review. J Water Process Eng 1:121–138

    Google Scholar 

  122. Mohammad AW, Ng CY, Lim YP, Ng GH (2012) Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control. Food Bioprocess Technol 5:1143–1156

    Google Scholar 

  123. Wu TF, Zhou BM, Zhu T, Shi J, Xu ZW, Hu CS, Wang JJ (2015) Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv 5:7880–7889

    CAS  Google Scholar 

  124. Cui FX, Xue CH, Li ZJ, Zhang YQ, Dong P, Fu XY, Gao X (2007) Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chem 100:1120–1125

    CAS  Google Scholar 

  125. Shen JN, Li DD, Jiang FY, Qiu JH, Gao CJ (2009) Purification and concentration of collagen by charged ultrafiltration membrane of hydrophilic polyacrylonitrile blend. Sep Purif Technol 66:257–262

    CAS  Google Scholar 

  126. Xu ZW, Zhang JG, Shan MJ, Li YL, Li BD, Niu JR, Zhou BM, Qian XM (2014) Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 458:1–13

    CAS  Google Scholar 

  127. Salim W, Ho WSW (2015) Recent developments on nanostructured polymer-based membranes. Curr Opin Chem Eng 8:76–82

    Google Scholar 

  128. Samaei SM, Gato-Trinidad S, Altaee A (2018) The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—a review. Sep Purif Technol 200:198–220

    CAS  Google Scholar 

  129. Bacchin P, Aimar P, Field R (2006) Critical and sustainable fluxes: theory, experiments and applications. J Membr Sci 281:42–69

    CAS  Google Scholar 

  130. Chenette HCS, Husson SM (2015) Membrane adsorbers comprising grafted glycopolymers for targeted lectin binding. J Appl Polym Sci 132:1–7

    Google Scholar 

  131. Halaui R, Moldavsky A, Cohen Y, Semiat R, Zussman E (2011) Development of micro-scale hollow fiber ultrafiltration membranes. J Membr Sci 379:370–377

    CAS  Google Scholar 

  132. Xu ZW, Wu TF, Shi J, Teng KY, Wang W, Ma MJ, Li J, Qian XM et al (2016) Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J Membr Sci 520:281–293

    CAS  Google Scholar 

  133. Barhate R, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8

    CAS  Google Scholar 

  134. Burger C, Hsiao BS, Chu B (2006) Nanofibrous materials and their applications. Annu Rev Mater Res 36:333–368

    CAS  Google Scholar 

  135. Wang X, Fang D, Yoon K, Hsiao BS, Chu B (2006) High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. J Membr Sci 278:261–268

    CAS  Google Scholar 

  136. Wang X, Zhang K, Yang Y, Wang L, Zhou Z, Zhu M, Hsiao BS, Chu B (2010) Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route. J Membr Sci 356:110–116

    CAS  Google Scholar 

  137. Wang XF, Chen XM, Yoon K, Fang DF, Hsiao BS, Chu B (2005) High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ Sci Technol 39:7684–7691

    CAS  Google Scholar 

  138. Bahmani P, Maleki A, Daraei H, Khamforoush M, Rezaee R, Gharibi F, Tkachev AG, Burakov AE et al (2017) High-flux ultrafiltration membrane based on electrospun polyacrylonitrile nanofibrous scaffolds for arsenate removal from aqueous solutions. J Colloid Interface Sci 506:564–571

    CAS  Google Scholar 

  139. Mokhena TC, Luyt AS (2017) Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres. J Clean Prod 156:470–479

    CAS  Google Scholar 

  140. Ma W, Zhao J, Oderinde O, Han J, Liu Z, Gao B, Xiong R, Zhang Q et al (2018) Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation. J Colloid Interface Sci 532:12–23

    CAS  Google Scholar 

  141. Li J, Hu Y, Liu W, Weng X, Dong X, Zhang X, Zhou W (2017) High flux and hydrophilic fibrous ultrafiltration membranes based on electrospun titanium dioxide nanoparticles/polyethylene oxide/poly(vinylidene fluoride) composite scaffolds. J Nanosci Nanotechnol 17:9042–9049

    CAS  Google Scholar 

  142. Lee J, Yoon J, Kim JH, Lee T, Byun H (2018) Electrospun PAN-GO composite nanofibers as water purification membranes. J Appl Polym Sci 135:45858

    Google Scholar 

  143. Wang Z, Crandall C, Prautzsch VL, Sahadevan R, Menkhaus TJ, Fong H (2017) Electrospun regenerated cellulose nanofiber membranes surface-grafted with water-insoluble poly(HEMA) or water-soluble poly(AAS) chains via the ATRP method for ultrafiltration of water. ACS Appl Mater Interfaces 9:4272–4278

    CAS  Google Scholar 

  144. Zhang JG, Xu ZW, Shan MJ, Zhou BM, Li YL, Li BD, Niu JR, Qian XM (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 448:81–92

    CAS  Google Scholar 

  145. Zhao ZB, Teng KY, Li N, Li XJ, Xu ZW, Chen L, Niu JR, Fu HJ et al (2017) Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface. Compos Struct 159:761–772

    Google Scholar 

  146. You H, Li X, Yang Y, Wang B, Li Z, Wang X, Zhu M, Hsiao BS (2013) High flux low pressure thin film nanocomposite ultrafiltration membranes based on nanofibrous substrates. Sep Purif Technol 108:143–151

    CAS  Google Scholar 

  147. Ma JL, Zhao YF, Xu ZW, Min CY, Zhou BM, Li YL, Li BD, Niu JR (2013) Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes. Desalination 320:1–9

    CAS  Google Scholar 

  148. Xu ZW, Wu TF, Shi J, Wang W, Teng KY, Qian XM, Shan MJ, Deng H et al (2016) Manipulating migration behavior of magnetic graphene oxide via magnetic field induced casting and phase separation toward high performance hybrid ultrafiltration membranes. ACS Appl Mater Interfaces 8:18418–18429

    CAS  Google Scholar 

  149. Subramanian S, Seeram R (2013) New directions in nanofiltration applications—are nanofibers the right materials as membranes in desalination? Desalination 308:198–208

    CAS  Google Scholar 

  150. Tang Z, Qiu C, McCutcheon JR, Yoon K, Ma H, Fang D, Lee E, Kopp C et al (2009) Design and fabrication of electrospun polyethersulfone nanofibrous scaffold for high-flux nanofiltration membranes. J Polym Sci, Part B Polym Phys 47:2288–2300

    CAS  Google Scholar 

  151. Tang Z, Wei J, Yung L, Ji B, Ma H, Qiu C, Yoon K, Wan F et al (2009) UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds. J Membr Sci 328:1–5

    CAS  Google Scholar 

  152. Xu P, Wang W, Qian XM, Wang HB, Guo CS, Li N, Xu ZW, Teng KY et al (2019) Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio. Desalination 449:57–68

    CAS  Google Scholar 

  153. Cheng J, Shi W, Zhang L, Zhang R (2017) A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC). Appl Surf Sci 416:152–159

    CAS  Google Scholar 

  154. Sutherland K (2008) Developments in filtration: what is nanofiltration? Filtr Sep 45:32–35

    CAS  Google Scholar 

  155. Ji Y, Qian W, Yu Y, An Q, Liu L, Zhou Y, Gao C (2017) Recent developments in nanofiltration membranes based on nanomaterials. Chin J Chem Eng 25:1639–1652

    Google Scholar 

  156. Low ZX, Ji J, Blumenstock D, Chew YM, Wolverson D, Mattia D (2018) Fouling resistant 2D boron nitride nanosheet—PES nanofiltration membranes. J Membr Sci 563:949–956

    CAS  Google Scholar 

  157. Soyekwo F, Zhang Q, Gao R, Qu Y, Lin C, Huang X, Zhu A, Liu Q (2017) Cellulose nanofiber intermediary to fabricate highly-permeable ultrathin nanofiltration membranes for fast water purification. J Membr Sci 524:174–185

    CAS  Google Scholar 

  158. Abdel-Fatah MA (2018) Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng J 9:3077–3092

    Google Scholar 

  159. Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47:2434–2441

    CAS  Google Scholar 

  160. Yoon K, Hsiao BS, Chu B (2009) High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. J Membr Sci 326:484–492

    CAS  Google Scholar 

  161. Bui N-N, Lind ML, Hoek EMV, McCutcheon JR (2011) Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J Membr Sci 385–386:10–19

    Google Scholar 

  162. Aziz S, Sabzi M, Fattahi A, Arkan E (2017) Electrospun silk fibroin/PAN double-layer nanofibrous membranes containing polyaniline/TiO2 nanoparticles for anionic dye removal. J Polym Res 24:140

    Google Scholar 

  163. Kaur S, Sundarrajan S, Gopal R, Ramakrishna S (2012) Formation and characterization of polyamide composite electrospun nanofibrous membranes for salt separation. J Appl Polym Sci 124:E205–E215

    CAS  Google Scholar 

  164. Kang H, Shi J, Liu LY, Shan MJ, Xu ZW, Li N, Li J, Lv HM et al (2018) Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes. Appl Surf Sci 428:990–999

    CAS  Google Scholar 

  165. Liu LY, Kang H, Wang W, Xu ZW, Mai W, Li J, Lv HM, Zhao LH et al (2018) Layer-by-layer self-assembly of polycation/GO/OCNTs nanofiltration membrane with enhanced stability and flux. J Mater Sci 53:10879–10890

    CAS  Google Scholar 

  166. Lee JY, Qi S, Liu X, Li Y, Huo F, Tang CY (2014) Synthesis and characterization of silica gel–polyacrylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly. Sep Purif Technol 124:207–216

    CAS  Google Scholar 

  167. Huang Y, Sun J, Wu D, Feng X (2018) Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes. Sep Purif Technol 207:142–150

    CAS  Google Scholar 

  168. Kim H, Eom TS, Cho W, Woo K, Shon Y, Wie JJ, Shim BS (2018) Soft electronics on asymmetrical porous conducting membranes by molecular layer-by-layer assembly. Sensors Actuators B Chem 254:916–925

    CAS  Google Scholar 

  169. Kunitake T (2018) Polyion complexation in solution, at interface and on surface: legacy for layer-by-layer assembly. J Taiwan Inst Chem Eng 92:15–19

    CAS  Google Scholar 

  170. Niksefat N, Jahanshahi M, Rahimpour A (2014) The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination 343:140–146

    CAS  Google Scholar 

  171. Yang Y, Chen M, Zou S, Yang X, Long TE, He Z (2017) Efficient recovery of polyelectrolyte draw solutes in forward osmosis towards sustainable water treatment. Desalination 422:134–141

    CAS  Google Scholar 

  172. Wang YN, Goh K, Li X, Setiawan L, Wang R (2018) Membranes and processes for forward osmosis-based desalination: recent advances and future prospects. Desalination 434:81–99

    CAS  Google Scholar 

  173. Zou S, Gu Y, Xiao D, Tang CY (2011) The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J Membr Sci 366:356–362

    CAS  Google Scholar 

  174. Xu Y, Peng X, Tang CY, Fu QS, Nie S (2010) Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. J Membr Sci 348:298–309

    CAS  Google Scholar 

  175. Li D, Yan Y, Wang H (2016) Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog Polym Sci 61:104–155

    Google Scholar 

  176. Korenak J, Basu S, Balakrishnan M, Hélix-Nielsen C, Petrinic I (2017) Forward osmosis in wastewater treatment processes. Acta Chim Slov 64:83–94

    CAS  Google Scholar 

  177. Luo W, Xie M, Song X, Guo W, Ngo HH, Zhou JL, Nghiem LD (2018) Biomimetic aquaporin membranes for osmotic membrane bioreactors: membrane performance and contaminant removal. Bioresour Technol 249:62–68

    CAS  Google Scholar 

  178. Cheng ZL, Li X, Chung T-S (2018) The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system: a new process to mitigate membrane fouling for sustainable osmotic power generation. J Membr Sci 559:63–74

    CAS  Google Scholar 

  179. Tiraferri A, Yip NY, Phillip WA, Schiffman JD, Elimelech M (2011) Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J Membr Sci 367:340–352

    CAS  Google Scholar 

  180. Akther N, Sodiq A, Giwa A, Daer S, Arafat HA, Hasan SW (2015) Recent advancements in forward osmosis desalination: a review. Chem Eng J 281:502–522

    CAS  Google Scholar 

  181. Tang CY, She Q, Lay WCL, Wang R, Fane AG (2010) Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J Membr Sci 354:123–133

    CAS  Google Scholar 

  182. Ma N, Wei J, Qi S, Zhao Y, Gao Y, Tang CY (2013) Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. J Membr Sci 441:54–62

    CAS  Google Scholar 

  183. Li G, Wang J, Hou D, Bai Y, Liu H (2016) Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis. J Environ Sci (China) 45:7–17

    Google Scholar 

  184. McCutcheon JR, Elimelech M (2006) Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J Membr Sci 284:237–247

    CAS  Google Scholar 

  185. Chanukya BS, Patil S, Rastogi NK (2013) Influence of concentration polarization on flux behavior in forward osmosis during desalination using ammonium bicarbonate. Desalination 312:39–44

    CAS  Google Scholar 

  186. Rastgar M, Shakeri A, Bozorg A, Salehi H, Saadattalab V (2017) Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes. Desalination 421:179–189

    CAS  Google Scholar 

  187. Bui NN, McCutcheon JR (2016) Nanoparticle-embedded nanofibers in highly permselective thin-film nanocomposite membranes for forward osmosis. J Membr Sci 518:338–346

    CAS  Google Scholar 

  188. Zhang X, Tian J, Gao S, Shi W, Zhang Z, Cui F, Zhang S, Guo S et al (2017) Surface functionalization of TFC FO membranes with zwitterionic polymers: improvement of antifouling and salt-responsive cleaning properties. J Membr Sci 544:368–377

    CAS  Google Scholar 

  189. Abdul Rahman AFHB, Abu Seman MNB (2018) Polyacrylic-polyethersulfone membrane modified via UV photografting for forward osmosis application. J Environ Chem Eng 6:4368–4379

    CAS  Google Scholar 

  190. Kang H, Wang W, Shi J, Xu ZW, Lv HM, Qian XM, Liu LY, Jing ML et al (2019) Interlamination restrictive effect of carbon nanotubes for graphene oxide forward osmosis membrane via layer by layer assembly. Appl Surf Sci 465:1103–1106

    CAS  Google Scholar 

  191. Liang B, Pan K, Li L, Giannelis EP, Cao B (2014) High performance hydrophilic pervaporation composite membranes for water desalination. Desalination 347:199–206

    CAS  Google Scholar 

  192. Kiani S, Mousavi SM, Saljoughi E, Shahtahmassebi N (2017) Novel high flux nanofibrous composite membrane based on polyphenylsulfone thin barrier layer on nanofibrous support. Fibers Polym 18:1531–1544

    CAS  Google Scholar 

  193. Song X, Liu Z, Sun DD (2011) Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate. Adv Mater 23:3256–3260

    CAS  Google Scholar 

  194. Abdal-hay A, Mousa HM, Khan A, Vanegas P, Lim JH (2014) TiO2 nanorods coated onto nylon 6 nanofibers using hydrothermal treatment with improved mechanical properties. Colloids Surfaces a-Physicochem Eng Aspects 457:275–281

    CAS  Google Scholar 

  195. Pant HR, Baek WI, Nam KT, Jeong IS, Barakat NAM, Kim HY (2011) Effect of lactic acid on polymer crystallization chain conformation and fiber morphology in an electrospun nylon-6 mat. Polymer 52:4851–4856

    CAS  Google Scholar 

  196. Zhang C, Huang M, Meng L, Li B, Cai T (2017) Electrospun polysulfone (PSf)/titanium dioxide (TiO2) nanocomposite fibers as substrates to prepare thin film forward osmosis membranes. J Chem Technol Biotechnol 92:2090–2097

    CAS  Google Scholar 

  197. Zhao X, Li J, Liu C (2017) Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer. Desalination 408:102–109

    Google Scholar 

  198. Zhang JG, Xu ZW, Mai W, Min CY, Zhou BM, Shan MJ, Li YL, Yang CY et al (2013) Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. J Mater Chem A 1:3101–3111

    CAS  Google Scholar 

  199. Zhao YF, Xu ZW, Shan MJ, Min CY, Zhou BM, Li YL, Li BD, Liu LS et al (2013) Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Sep Purif Technol 103:78–83

    CAS  Google Scholar 

  200. Amini M, Jahanshahi M, Rahimpour A (2013) Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J Membr Sci 435:233–241

    CAS  Google Scholar 

  201. Kim E-S, Hwang G, Gamal El-Din M, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394–395:37–48

    Google Scholar 

  202. Jia YX, Li HL, Wang M, Wu LY, Hu YD (2010) Carbon nanotube: possible candidate for forward osmosis. Sep Purif Technol 75:55–60

    CAS  Google Scholar 

  203. Dumée L, Lee J, Sears K, Tardy B, Duke M, Gray S (2013) Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems. J Membr Sci 427:422–430

    Google Scholar 

  204. Tian M, Wang YN, Wang R (2015) Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination 370:79–86

    CAS  Google Scholar 

  205. Huang Y, Xiao CF, Huang QL, Liu HL, Hao JQ, Song L (2018) Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. J Membr Sci 548:184–193

    CAS  Google Scholar 

  206. Dahanayaka M, Liu B, Hu Z, Pei QX, Chen Z, Law AW, Zhou K (2017) Graphene membranes with nanoslits for seawater desalination via forward osmosis. Phys Chem Chem Phys 19:30551–30561

    CAS  Google Scholar 

  207. Jiang Z, Li Q, Chen M, Li J, Li J, Huang Y, Besenbacher F, Dong M (2013) Mechanical reinforcement fibers produced by gel-spinning of poly-acrylic acid (PAA) and graphene oxide (GO) composites. Nanoscale 5:6265–6269

    CAS  Google Scholar 

  208. Ghaffar A, Zhang L, Zhu X, Chen B (2018) Porous PVdF/GO nanofibrous membranes for selective separation and recycling of charged organic dyes from water. Environ Sci Technol 52:4265–4274

    CAS  Google Scholar 

  209. Wang J, Chen B (2015) Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem Eng J 281:379–388

    CAS  Google Scholar 

  210. Li MM, Wang W, Teng KY, Xu ZW, Li CY, Shan MJ, Yang CY, Qian XM et al (2017) Manipulating F/O ratio of fluorinated graphene oxide to improve permeability and antifouling properties of poly(vinylidene fluoride) hybrid membranes. J Nanosci Nanotechnol 17:8935–8945

    CAS  Google Scholar 

  211. Li MM, Shi J, Chen C, Li N, Xu ZW, Li J, Lv HM, Qian XM et al (2017) Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide. J Nanopart Res 19:114

    Google Scholar 

  212. Yu L, Zhang Y, Zhang B, Liu J, Zhang H, Song C (2013) Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci 447:452–462

    CAS  Google Scholar 

  213. Hung WS, Chiao YH, Sengupta A, Lin YW, Wickramasinghe SR, Hu CC, Tsai HA, Lee KR et al (2019) Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance. Carbon 142:337–345

    CAS  Google Scholar 

  214. Hegab HM, ElMekawy A, Barclay TG, Michelmore A, Zou L, Saint CP, Ginic-Markovic M (2016) Effective in situ chemical surface modification of forward osmosis membranes with polydopamine-induced graphene oxide for biofouling mitigation. Desalination 385:126–137

    CAS  Google Scholar 

  215. Zhang L, Chen B, Ghaffar A, Zhu X (2018) Nanocomposite membrane with polyethylenimine-grafted graphene oxide as a novel additive to enhance pollutant filtration performance. Environ Sci Technol 52:5920–5930

    CAS  Google Scholar 

  216. Obaid M, Kang Y, Wang S, Yoon MH, Kim CM, Song JH, Kim IS (2018) Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes via the design of novel freestanding robust nanofiber substrates. J Mater Chem A 6:11700–11713

    CAS  Google Scholar 

  217. Nirmala R, Navamathavan R, Kim HY, Park SJ (2015) Electrical properties of conductive Nylon66/graphene oxide composite nanofibers. J Nanosci Nanotechnol 15:5718–5722

    CAS  Google Scholar 

  218. Yang C, Chen S, Wang J, Zhu T, Xu G, Chen Z, Ma X, Li W (2016) A facile electrospinning method to fabricate polylactide/graphene/MWCNTs nanofiber membrane for tissues scaffold. Appl Surf Sci 362:163–168

    CAS  Google Scholar 

  219. Suwaileh WA, Johnson DJ, Sarp S, Hilal N (2018) Advances in forward osmosis membranes: altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 436:176–201

    CAS  Google Scholar 

  220. Puguan JMC, Kim HS, Lee KJ, Kim H (2014) Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer. Desalination 336:24–31

    CAS  Google Scholar 

  221. Rajesh S, Zhao Y, Fong H, Menkhaus TJ (2016) Polyacrylonitrile nanofiber membranes modified with ionically crosslinked polyelectrolyte multilayers for the separation of ionic impurities. Nanoscale 8:18376–18389

    CAS  Google Scholar 

  222. Huang L, Arena JT, McCutcheon JR (2016) Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis. J Membr Sci 499:352–360

    CAS  Google Scholar 

  223. Xu S, Lin P, An X, Hu Y, Wang Z, Zhong L, Niu Q (2017) High-performance forward osmosis membranes used for treating high-salinity oil-bearing wastewater. Ind Eng Chem Res 56:12385–12394

    CAS  Google Scholar 

  224. Park MJ, Gonzales RR, Abdel-Wahab A, Phuntsho S, Shon HK (2018) Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination 426:50–59

    CAS  Google Scholar 

  225. Tian EL, Zhou H, Ren YW, Mirza Za, Wang XZ, Xiong SW (2014) Novel design of hydrophobic/hydrophilic interpenetrating network composite nanofibers for the support layer of forward osmosis membrane. Desalination 347:207–214

    CAS  Google Scholar 

  226. Shokrollahzadeh S, Tajik S (2018) Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate. Desalination 425:68–76

    CAS  Google Scholar 

  227. Stillman D, Krupp L, La Y-H (2014) Mesh-reinforced thin film composite membranes for forward osmosis applications: the structure–performance relationship. J Membr Sci 468:308–316

    CAS  Google Scholar 

  228. Park M, Lee JJ, Lee S, Kim JH (2011) Determination of a constant membrane structure parameter in forward osmosis processes. J Membr Sci 375:241–248

    CAS  Google Scholar 

  229. Emadzadeh D, Lau WJ, Matsuura T, Ismail AF, Rahbari-Sisakht M (2014) Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. J Membr Sci 449:74–85

    CAS  Google Scholar 

  230. Zou S, Qin M, He Z (2018) Tackle reverse solute flux in forward osmosis towards sustainable water recovery: reduction and perspectives. Water Res 149:362–374

    Google Scholar 

  231. Shibuya M, Yasukawa M, Takahashi T, Miyoshi T, Higa M, Matsuyama H (2015) Effect of operating conditions on osmotic-driven membrane performances of cellulose triacetate forward osmosis hollow fiber membrane. Desalination 362:34–42

    CAS  Google Scholar 

  232. Shan MJ, Kang H, Xu ZW, Li N, Jing ML, Hu YL, Teng KY, Qian XM et al (2019) Decreased cross-linking in interfacial polymerization and heteromorphic support between nanoparticles: towards high-water and low-solute flux of hybrid forward osmosis membrane. J Colloid Interface Sci 548:170–183

    CAS  Google Scholar 

  233. Tian M, Qiu C, Liao Y, Chou S, Wang R (2013) Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Sep Purif Technol 118:727–736

    CAS  Google Scholar 

  234. Wang Y, Zhang M, Liu Y, Xiao Q, Xu S (2016) Quantitative evaluation of concentration polarization under different operating conditions for forward osmosis process. Desalination 398:106–113

    CAS  Google Scholar 

  235. Hoover LA, Schiffman JD, Elimelech M (2013) Nanofibers in thin-film composite membrane support layers: enabling expanded application of forward and pressure retarded osmosis. Desalination 308:73–81

    CAS  Google Scholar 

  236. Shi J, Kang H, Li N, Teng KY, Sun WY, Xu ZW, Qian XM, Liu Q (2019) Chitosan sub-layer binding and bridging for nanofiber-based composite forward osmosis membrane. Appl Surf Sci 478:38–48

    CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Natural Science Foundation of China (51708409), the Qaidam Salt Chemical Joint Fund of National Natural Science Foundation of China—People’s Government of Qinghai Province (U1607117) and the National Innovation and Entrepreneurship Training Program for College Students (201810058025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyuan Pei or Zhiwei Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Chen, Z., Pei, X. et al. Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation. J Mater Sci 55, 893–924 (2020). https://doi.org/10.1007/s10853-019-04012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04012-7

Navigation