Skip to main content
Log in

The preparation and property of photo- and thermo-responsive hydrogels with a blending system

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogels are the attractive biomaterials for biomedical applications. The dual-stimuli-responsive system, which is sensitive to both temperature and UV irradiation, was achieved through the self-assembly of amphiphilic block copolymers in aqueous solution and the cleavage of ο-nitrobenzyl (NB) ester groups under UV irradiation. The copolymer of poly(ε-caprolactone)-b-ο-nitrobenzyl-poly(ethylene glycol)-ο-nitrobenzyl-b-poly(ε-caprolactone) (PCL-NB-PEG-NB-PCL) was prepared by ring-opening polymerization (ROP) and nucleophilic substitution reaction of ε-caprolactone (ε-CL) using photo-sensitized polyethylene glycol as an initiator. After blending with poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) (PCL-PEG-PCL), the system exhibited the promising dual sensitivity with wide gel-phase window and controllable sensitive properties. The structures and dual-responsive behaviors were characterized by 1H-NMR, GPC, DMA, UV–Vis, DLS and SEM. The results demonstrated the temperature and photo-sensitivity of the synthesized hydrogel and indicated that the blending of these two copolymers can easily adjust the phase transition temperature and broaden the gel-phase window through the content of NB groups in PCL-NB-PEG-NB-PCL and the hydrophilic/hydrophobic balance of system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Han Y, Yang W, Cui W et al (2019) Development of functional hydrogels for heart failure. J Mater Chem B 7(10):1563–1580

    Article  CAS  Google Scholar 

  2. Li X, Su X (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6(29):4714–4730

    Article  CAS  Google Scholar 

  3. Yang Y, Liu X, Li Y et al (2017) A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability. Acta Biomater 62:199–209

    Article  CAS  Google Scholar 

  4. Singh YP, Moses JC, Bhardwaj N et al (2018) Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 6(35):5499–5529

    Article  CAS  Google Scholar 

  5. Gu D, Tan S, Xu C et al (2017) Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture. Chem Comm 53(50):6756–6759

    Article  CAS  Google Scholar 

  6. Chassenieux C, Tsitsilianis C (2016) Recent trends in pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators. Soft Matter 12(5):1344–1359

    Article  CAS  Google Scholar 

  7. Deng H, Dong A, Song J et al (2019) Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery. J Control Release 297:60–70

    Article  CAS  Google Scholar 

  8. Norouzi M, Nazari B, Miller DW (2016) Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 21(11):1835–1849

    Article  CAS  Google Scholar 

  9. Kuckling D (2009) Responsive hydrogel layers—from synthesis to applications. Colloid Polym Sci 287(8):881–891

    Article  CAS  Google Scholar 

  10. Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287(6):627–643

    Article  CAS  Google Scholar 

  11. Hoffman AS (2000) Bioconjugates of intelligent polymers and recognition proteins for use in diagnostics and affinity separations. Clin Chem 46(9):1478–1486

    CAS  Google Scholar 

  12. Gong CY, Wu QJ, Dong PW et al (2009) Acute toxicity evaluation of biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PEG–PCL–PEG hydrogel. J Biomed Mater Res B Appl Biomater 91(1):26–36

    Article  Google Scholar 

  13. Gong CY, Shi S, Dong P et al (2009) Synthesis and characterization of PEG–PCL–PEG thermosensitive hydrogel. Int J Pharm 365(1–2):89–99

    Article  CAS  Google Scholar 

  14. Liu CB, Gong CY, Huang JM et al (2008) Thermoreversible gel–sol behavior of biodegradable PCL–PEG–PCL triblock copolymer in aqueous solutions. J Biomed Mater Res Part B Appl Biomater 84(B):165–175

    Article  Google Scholar 

  15. Bae SJ, Suh JM, Sohn YS et al (2005) Thermogelling poly (caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 38:5260–5265

    Article  CAS  Google Scholar 

  16. Hu J, Chen Y, Li Y (2017) A thermo-degradable hydrogel with light-tunable degradation and drug release. Biomaterials 112:133–140

    Article  CAS  Google Scholar 

  17. Liu G, Dong CM (2012) Photoresponsive poly(S-(o-nitrobenzyl)-l-cysteine)-b-PEO from a l-cysteine N-carboxyanhydride monomer: synthesis, self-assembly, and phototriggered drug release. Biomacromol 13(5):1573–1583

    Article  CAS  Google Scholar 

  18. Xiao P, Zhang J, Zhao J, Stenzel MH (2017) Light-induced release of molecules from polymers. Prog Polym Sci 74:1–33

    Article  CAS  Google Scholar 

  19. Gohy JF, Zhao Y (2013) Photo-responsive block copolymer micelles: design and behavior. Chem Soc Rev 42(17):7117–7129

    Article  CAS  Google Scholar 

  20. Zhao H, Sterner ES, Coughlin EB, Theato P (2012) o-Nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules 45(4):1723–1736

    Article  CAS  Google Scholar 

  21. Rabnawaz M, Liu GJ (2012) Preparation and application of a dual light-responsive triblock terpolymer. Macromolecules 45:5586–5595

    Article  CAS  Google Scholar 

  22. Huynh DP, Nguyen MK, Pi BS et al (2008) Functionalized injectable hydrogels for controlled insulin delivery. Biomaterials 29(16):2527–2534

    Article  CAS  Google Scholar 

  23. Li L, Deng X, Li ZL et al (2014) Multifunctional photodegradable polymers for reactive micropatterns. Macromolecules 47:4660–4667

    Article  CAS  Google Scholar 

  24. Abebe DG, Fujiwara T (2012) Controlled thermoresponsive hydrogels by stereocomplexed PLA–PEG–PLA prepared via hybrid micelles of pre-mixed copolymers with different PEG lengths. Biomacromol 13:1828–1836

    Article  CAS  Google Scholar 

  25. Wang C, Zhang GY, Liu GH (2017) Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin. J Control Release 259:149–159

    Article  CAS  Google Scholar 

  26. Yi Y, Kermasha S, Neufeld R (2008) Nanoporous sol-gel supports enzymatic hydrolysis of chlorophyll in organic media. In: Biomolecular catalysis. ACS Symposium Series, vol 986, chap 12, p 199-213. https://doi.org/10.1021/bk-2008-0986.ch012.

    Chapter  Google Scholar 

  27. Jabbari AS (2007) Viscoelastic characterization and modeling of gelation kinetics of injectable in situ cross-linkable poly (lactideco-ethylene oxideco-fumarate) hydrogel. Biomacromolecules 8:406–415

    Article  Google Scholar 

  28. Hwang MJ, Joo MK, Choi BG et al (2010) Multiple sol–gel transitions of PEG–PCL–PEG triblock copolymer aqueous solution. Macromol Rapid Commun 31:2064–2069

    Article  CAS  Google Scholar 

  29. Buwalda SJ, Nottelet B, Coudane J (2017) Robust & thermosensitive poly(ethylene glycol)-poly(ε-caprolactone) star block copolymer hydrogels. Polym Degrad Stab 37:173–183

    Article  Google Scholar 

  30. Yu M, Nowak AP, Deming TJ (1999) Methylated mono- and diethyleneglycol functionalized polylysines: nonionic, α-helical, water-soluble polypeptides. J Am Chem Soc 121:12210–12211

    Article  CAS  Google Scholar 

  31. Hwang MJ, Suh JM, Bae YH (2005) Caprolactonic poloxamer analog: PEG–PCL–PEG. Biomacromol 6:885–890

    Article  CAS  Google Scholar 

  32. Wu X, Zhao H, Nörnberg BJ et al (2014) Synthesis and characterization of hydroxyl-functionalized poly (propylene carbonate). Macromolecules 47:492–497

    Article  CAS  Google Scholar 

Download references

Acknowledgements

National Natural Sciences Fund of China (No. 31670979, No. 51273034), Opening Project of Key Laboratory of Advanced Technologies Materials, Ministry of Education (2016KLATM006), and Science and Technology Program of Sichuan Province (2018GZ0460 and 2019YFS0132) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Liu or Jianyuan Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuai, S., Zhou, S., Liu, Y. et al. The preparation and property of photo- and thermo-responsive hydrogels with a blending system. J Mater Sci 55, 786–795 (2020). https://doi.org/10.1007/s10853-019-04010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04010-9

Navigation