Journal of Materials Science

, Volume 55, Issue 1, pp 263–273 | Cite as

Achieving high thermoelectric properties of Bi2S3 via InCl3 doping

  • Jun Guo
  • Zhen-Hua GeEmail author
  • Feng Qian
  • De-Hong Lu
  • Jing Feng
Electronic materials


Bi2S3, with earth-abundant compositions and a low thermal conductivity, is regarded as a candidate thermoelectric material. In this work, Bi2S3 samples that were doped with x % mol InCl3 were successfully fabricated via a mechanical alloying and spark plasma sintering process. InCl3, as an n-type donor dopant, was added to the Bi2S3 system to improve its electrical transport properties and optimize its thermal conductivity. Upon doping, the electrical conductivity of Bi2S3 doped with 1 mol% InCl3 reaches up to 62 Scm−1, and the Seebeck coefficient maintains a relatively large value of −244 μV K−1 at 673 K, which results in a maximum power factor of 363 μW m−1 K−2. Furthermore, due to a simultaneously reduced thermal conductivity at high temperature, a ZT peak of 0.57 is obtained at 673 K along the parallel to the press direction for the sample doped with 1.0 mol% InCl3, which is almost four times higher than that of pristine Bi2S3 (0.14 at 673 K). The elastic properties and Debye temperature of Bi2S3 are also calculated to analyze the origin of the intrinsically low thermal conductivity and are compared to those of other thermoelectric materials with a low thermal conductivity.



This work was supported by the National Natural Science Foundation of China (Grant No. 11764025).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.


  1. 1.
    Hayder A-M, Gao M (2017) Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system. Energy Convers Manag 133:14–19CrossRefGoogle Scholar
  2. 2.
    Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461CrossRefGoogle Scholar
  3. 3.
    Zhou C, Dun C, Wang K, Zhang X, Shi Z, Liu G, Hewitt CA, Qiao G, Carroll DL (2016) General method of synthesis ultrathin ternary metal chalcogenide nanowires for potential thermoelectric applications. Nano Energy 30:709–716CrossRefGoogle Scholar
  4. 4.
    Kang H, Li J, Liu Y, Guo E, Chen Z, Liu D, Fan G, Zhang Y, Jiang X, Wang T (2018) Optimizing the thermoelectric transport properties of BiCuSeO via doping with the rare-earth variable-valence element Yb. J Mater Chem C 6:8479–8487CrossRefGoogle Scholar
  5. 5.
    Pei YL, Wu H, Wu D, Zheng F, He J (2014) High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc 136:13902–13908CrossRefGoogle Scholar
  6. 6.
    Ge Z-H, Qin P, He D, Chong X, Feng D, Ji Y-H, Feng J, He J (2017) Highly enhanced thermoelectric properties of Bi/Bi2S3 nanocomposites. ACS Appl Mater Interfaces 9:4828–4834CrossRefGoogle Scholar
  7. 7.
    Yang L, Chen ZG, Hong M, Han G, Zou J (2015) Enhanced thermoelectric performance of nanostructured Bi2Te3 through significant phonon scattering. ACS Appl Mater Interfaces 7:23694–23699CrossRefGoogle Scholar
  8. 8.
    Zhu Y, Carrete J, Meng Q-L, Huang Z, Mingo N, Jiang P, Bao X (2018) Independently tuning the power factor and thermal conductivity of SnSe via Ag2S addition and nanostructuring. J Mater Chem A 6:7959–7966CrossRefGoogle Scholar
  9. 9.
    Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24:6125–6135CrossRefGoogle Scholar
  10. 10.
    Zhu H, Sun W, Armiento R, Lazić P, Ceder G (2014) Band structure engineering through orbital interaction for enhanced thermoelectric power factor. Appl Phys Lett 104:082107CrossRefGoogle Scholar
  11. 11.
    Zhao L-D, Zhang B-P, Li J-F, Zhou M, Liu W-S, Liu J (2008) Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd 455:259–264CrossRefGoogle Scholar
  12. 12.
    Wu HJ, Zhao LD, Zheng FS, Wu D, Pei YL, Tong X, Kanatzidis MG, He JQ (2014) Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun 5:4515CrossRefGoogle Scholar
  13. 13.
    Biswas K, Zhao L-D, Kanatzidis MG (2012) Tellurium-free thermoelectric: the anisotropic n-type semiconductor Bi2S3. Adv Energy Mater 2:634–638CrossRefGoogle Scholar
  14. 14.
    Chang C, Xiao Y, Zhang X, Pei Y, Li F, Ma S, Yuan B, Liu Y, Gong S, Zhao L-D (2016) High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS through nanostructuring grain size. J Alloys Compd 664:411–416CrossRefGoogle Scholar
  15. 15.
    Cheng X, Wang L, Wang X, Chen G (2018) Flexible films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/SnS nanobelt thermoelectric composites. Compos Sci Technol 155:247–251CrossRefGoogle Scholar
  16. 16.
    Xie H, Su X, Zheng G, Zhu T, Yin K, Yan Y, Uher C, Kanatzidis MG, Tang X (2017) The role of Zn in chalcopyrite CuFeS2: enhanced thermoelectric properties of Cu1−xZnxFeS2 with in situ nanoprecipitates. Adv Energy Mater 7:1601299CrossRefGoogle Scholar
  17. 17.
    Zhang R-z, Chen K, Du B, Reece MJ (2017) Screening for Cu–S based thermoelectric materials using crystal structure features. J Mater Chem A 5:5013–5019CrossRefGoogle Scholar
  18. 18.
    Ge ZH, Song D, Chong X, Zheng F, Jin L, Qian X, Zheng L, Dunin-Borkowski RE, Qin P, Feng J, Zhao LD (2017) Boosting the thermoelectric performance of (Na, K)-codoped polycrystalline SnSe by synergistic tailoring of the band structure and atomic-scale defect phonon scattering. J Am Chem Soc 139:9714–9720CrossRefGoogle Scholar
  19. 19.
    Li F, Wang W, Ge ZH, Zheng Z, Luo J, Fan P, Li B (2018) Enhanced thermoelectric properties of polycrystalline SnSe via LaCl(3) doping. Materials 11:203CrossRefGoogle Scholar
  20. 20.
    Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373CrossRefGoogle Scholar
  21. 21.
    Li J, Sui J, Pei Y, Meng X, Berardan D, Dragoe N, Cai W, Zhao L-D (2014) The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J Mater Chem A 2:4903–4906CrossRefGoogle Scholar
  22. 22.
    Zhao L-D, He J, Berardan D, Lin Y, Li J-F, Nan C-W, Dragoe N (2014) BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ Sci 7:2900–2924CrossRefGoogle Scholar
  23. 23.
    Liu R, Lan J-l, Tan X, Liu Y-c, Ren G-k, Liu C, Zhou Z-f, Nan C-w, Lin Y-h (2018) Carrier concentration optimization for thermoelectric performance enhancement in n-type Bi2O2Se. J Eur Ceram Soc 38:2472–2746Google Scholar
  24. 24.
    Tan X, Liu Y, Hu K, Ren G, Li Y, Liu R, Lin Y-H, Lan J-L, Nan C-W (2017) Synergistically optimizing electrical and thermal transport properties of Bi2O2Se ceramics by Te-substitution. J Am Ceram Soc 101:326–333CrossRefGoogle Scholar
  25. 25.
    Liu Z, Pei Y, Geng H, Zhou J, Meng X, Cai W, Liu W, Sui J (2015) Enhanced thermoelectric performance of Bi2S3 by synergistical action of bromine substitution and copper nanoparticles. Nano Energy 13:554–562CrossRefGoogle Scholar
  26. 26.
    Yang J, Liu G, Yan J, Zhang X, Shi Z, Qiao G (2017) Enhanced the thermoelectric properties of n -type Bi2S3 polycrystalline by iodine doping. J Alloys Compd 728:351CrossRefGoogle Scholar
  27. 27.
    Meng Q-L, Kong S, Huang Z, Zhu Y, Liu H-C, Lu X, Jiang P, Bao X (2016) Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In2S3 doping. J Mater Chem A 4:12624–12629CrossRefGoogle Scholar
  28. 28.
    Tsutsui M, Zhang LT, Ito K, Yamaguchi M (2004) Effects of in-doping on the thermoelectric properties of β-Zn4Sb3. Intermetallics 12:809–813CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Liao B, Lan Y, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Chen G, Ren Z (2013) High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc Natl Acad Sci USA 110:13261–13266CrossRefGoogle Scholar
  30. 30.
    Ge ZH, Zhang BP, Liu Y, Li JF (2012) Nanostructured Bi(2−x)Cu(x)S3 bulk materials with enhanced thermoelectric performance. Phys Chem Chem Phys 14:4475–4481CrossRefGoogle Scholar
  31. 31.
    Guo J, Ge Z, Hu M, Qin P, Feng J (2018) Facile synthesis of NaBiS2 nanoribbons as a promising visible light-driven photocatalyst. Phys Status Solidi-R 12:1800135CrossRefGoogle Scholar
  32. 32.
    López R, Gómez R (2011) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol–Gel Sci Technol 61:1–7CrossRefGoogle Scholar
  33. 33.
    Pei J, Zhang L-J, Zhang B-P, Shang P-P, Liu Y-C (2017) Enhancing the thermoelectric performance of CexBi2S3 by optimizing the carrier concentration combined with band engineering. J Mater Chem C 5:12492–12499CrossRefGoogle Scholar
  34. 34.
    Du X, Cai F, Wang X (2014) Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. J Alloys Compd 587:6–9CrossRefGoogle Scholar
  35. 35.
    Morin FJ, Maita JP (1954) Conductivity and Hall effect in the intrinsic range of germanium. Phys Rev 94:1525CrossRefGoogle Scholar
  36. 36.
    Morin FJ, Maita JP (1954) Electrical properties of silicon containing arsenic and boron. Phys Rev 96:28CrossRefGoogle Scholar
  37. 37.
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ (2008) Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321:554–557CrossRefGoogle Scholar
  38. 38.
    Wan CL, Pan W, Xu Q, Qin YX, Wang JD, Qu ZX, Fang MH (2006) Effect of point defects on the thermal transport properties of (LaxGd1−x)2Zr2O7: experiment and theoretical model. Phys Rev B 74:144109CrossRefGoogle Scholar
  39. 39.
    Kurosaki K, Kosuga A, Muta H, Uno M, Yamanaka S (2005) Ag9TlTe5: a high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl Phys Lett 87:061919CrossRefGoogle Scholar
  40. 40.
    Liu X, Wang D, Wu H, Wang J, Zhang Y, Wang G, Pennycook SJ, Zhao L-D (2018) Intrinsically low thermal conductivity in BiSbSe3: a promising thermoelectric material with multiple conduction bands. Adv Funct Mater 29:1806558CrossRefGoogle Scholar
  41. 41.
    Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X, Gong S, He J (2016) Origin of low thermal conductivity in SnSe. Phys Rev B 94:125203CrossRefGoogle Scholar
  42. 42.
    Anderson OL (1963) A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids 24:909–917CrossRefGoogle Scholar
  43. 43.
    Ge C, Hu M, Wu P, Tan Q, Chen Z, Wang Y, Shi J, Feng J (2018) Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic-inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I). J Phys Chem C 122:15973–15978CrossRefGoogle Scholar
  44. 44.
    Koc H, Ozisik H, Deligoz E, Mamedov AM, Ozbay E (2014) Mechanical, electronic, and optical properties of Bi(2)S(3) and Bi(2)Se(3) compounds: first principle investigations. J Mol Model 20:2180CrossRefGoogle Scholar
  45. 45.
    Gao X, Zhou M, Cheng Y, Ji G (2016) First-principles study of structural, elastic, electronic and thermodynamic properties of topological insulator Bi2Se3 under pressure. Philos Mag 96:208–222CrossRefGoogle Scholar
  46. 46.
    Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G, Wu H, Chen Y, Zheng L, Gong S, Zhu T, Zhao X, Huang L, He J, Kanatzidis MG, Zhao LD (2016) Multiple converged conduction bands in K2Bi8Se13: a promising thermoelectric material with extremely low thermal conductivity. J Am Chem Soc 138:16364–16371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations