Texture and interface characterization of iridium thin films grown on MgO substrates with different orientations

  • Lucian TrupinaEmail author
  • Liviu Nedelcu
  • Marian Gabriel Banciu
  • Aurelian Crunteanu
  • Laure Huitema
  • Cătălin ConstantinescuEmail author
  • Alexandre Boulle
Metals & corrosion


Iridium thin films are grown by direct-current plasma magnetron sputtering, on MgO single-crystal substrates with various surface orientations, i.e. (100), (111), and (110). The surface morphology, the crystalline properties of the films, and the substrate–thin-film interface are investigated by atomic force microscopy, X-ray diffraction (XRD), focused ion beam scanning electron microscopy, and high-resolution transmission electron microscopy, respectively. The results reveal that hetero-epitaxial thin films with different crystallographic orientation and notable atomic scale smooth surface are obtained. From the XRD analysis, the following epitaxial relations are obtained: (1) (100)Ir||(100)MgO out-of-plane and [001]Ir||[001]MgO in-plane for Ir grown on MgO(100), (2) (110)Ir||(110)MgO out-of-plane and [1-10]Ir||[1-10]MgO in-plane for Ir grown on MgO(110), and (3) (111)Ir||(111)MgO out-of-plane and two variants for in-plane orientation [1-10]Ir||[1-10]MgO and [1-10]Ir||[10-1]MgO, respectively, for Ir grown on MgO(111). Because of the large misfit strain (9.7%), the thin films are found to grow in a strain-relaxed state with the formation of geometrical misfit dislocations with a ~ 2.8-nm spacing, whereas thermal strain is stored upon cooling down from the growth temperature (600 °C). The best structural characteristics are obtained for the (111)-oriented films with a mosaicity of 0.3° and vanishingly small lattice distortions. The (100)- and (110)-oriented films exhibit mosaicities of ~ 1.2° and lattice distortions of ~ 1% which can be explained by the larger surface energy of these planes as compared to (111).



This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI—UEFISCDI project number 61/2016 within PNCDI III, Core Program PN19-03 (Contract No. 21N/08.02.2019) and by the H2020 European project “MASTERS” within the M-ERA.NET call ( The authors gratefully acknowledge the help of Pierre CARLES and thank the CARMALIM team at the “Centre Européen de la Céramique” in Limoges, for their support in investigating the structure and morphology of the thin-film samples.

Supplementary material

10853_2019_4004_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1389 kb)


  1. 1.
    Tolstova Y, Omelchenko ST, Shing AM, Atwater HA (2016) Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering. Sci Rep 6:23232. CrossRefGoogle Scholar
  2. 2.
    Ohtake M, Ouchi S, Kirino F, Futamoto M (2012) Structure and magnetic properties of CoPt, CoPd, FePt, and FePd alloy thin films formed on MgO(111) substrates. IEEE Trans Magn 48:3595–3598. CrossRefGoogle Scholar
  3. 3.
    Tanaka T, Ohtake M, Kirino F, Futamoto M (2010) Microstructure of NiFe epitaxial thin films grown on MgO single-crystal substrates. IEEE Trans Magn 46:345–348. CrossRefGoogle Scholar
  4. 4.
    Borca B, Frucharta O, David Ph, Rousseau A, Meyer C (2007) Kinetic self-organization of trenched templates for the fabrication of versatile ferromagnetic nanowires. Appl Phys Lett 90:142507. CrossRefGoogle Scholar
  5. 5.
    Wandelt K (ed) (2014) Surface and interface science, vol 4. Wiley, New York. ISBN: 9783527411573
  6. 6.
    Bensalah H, Stenger I, Sakr G, Barjon J, Bachelet R, Tallaire A, Achard J, Vaissiere N, Lee KH, Saada S, Arnault JC (2016) Mosaicity, dislocations and strain in heteroepitaxial diamond grown on iridium. Diam Relat Mater 66:188–195. CrossRefGoogle Scholar
  7. 7.
    Okada M, Ogura S, Diño WA, Wilde M, Fukutani K, Kasai T (2005) Reactivity of gold thin films grown on iridium: hydrogen dissociation. Appl Catal A 291:55–61. CrossRefGoogle Scholar
  8. 8.
    Kúš P, Ostroverkh A, Ševčíková K, Khalakhan I, Fiala R, Skála T, Tsud N, Matolin V (2016) Magnetron sputtered Ir thin film on TiC-based support sublayer as low-loading anode catalyst for proton exchange membrane water electrolysis. Int J Hydrog Energy 41:15124–15132. CrossRefGoogle Scholar
  9. 9.
    Wesselmark M, Wickman B, Lagergren C, Lindbergh G (2013) The impact of iridium on the stability of platinum on carbon thin-film model electrodes. Electrochim Acta 111:152–159. CrossRefGoogle Scholar
  10. 10.
    Bessey JS, Roth JA (1994) Sputtered iridium coatings for grazing incidence X-ray reflectance. Proc SPIE 2011:12–17. CrossRefGoogle Scholar
  11. 11.
    Broadway DM, Weimer J, Gurgew D, Lis T, Ramsey BD, O’Dell M, Gubarev A, Bruni Ames R (2015) Achieving zero stress in iridium, chromium, and nickel thin films. Proc SPIE 9510:95100E. Google Scholar
  12. 12.
    Owen EA, Yates EL (1933) Precision measurements of crystal parameters. Philos Mag 15:472–488. CrossRefGoogle Scholar
  13. 13.
    Arblaster JW (2010) Crystallographic properties of iridium. Assessment of properties from absolute zero to the melting point. Platin Met Rev 54:93–102. CrossRefGoogle Scholar
  14. 14.
    Zhuang H, Tkalych AJ, Carter EA (2016) Surface energy as a descriptor of catalytic activity. J Phys Chem C 120:23698–23706. CrossRefGoogle Scholar
  15. 15.
    Somorjai GA, Li Y (2011) Impact of surface chemistry. PNAS 108:917–924. CrossRefGoogle Scholar
  16. 16.
    Lang E, Müller K, Heinz K, Van Hove MA, Koestner RJ, Somorjai GA (1983) LEED intensity analysis of the (1 × 5) reconstruction of Ir(100). Surf Sci 127:347–365. CrossRefGoogle Scholar
  17. 17.
    Van Hove MA, Koestner RJ, Stair PC, Bibérian JP, Kesmodel LL, Bartoš I, Somorjai GA (1981) The surface reconstructions of the (100) crystal faces of iridium, platinum and gold: I. Experimental observations and possible structural models. Surf Sci 103:189–217. CrossRefGoogle Scholar
  18. 18.
    Grant JT (1969) A LEED study of the Ir(100) surface. Surf Sci 18:228–238. CrossRefGoogle Scholar
  19. 19.
    Christmann K, Ertl G (1973) Interactions of CO and 02 with Ir(110) Surfaces. Zeitschrift für Naturforschung A 28a:1144–1148. Google Scholar
  20. 20.
    Rai R, Li T, Liang Z, Kim MK, Asthagiri A, Weaver JF (2016) Growth and termination of a rutile IrO2(100) layer on Ir(111). Surf Sci 652:213–221. CrossRefGoogle Scholar
  21. 21.
    Büttner A, Probst AC, Emmerich F, Damm C, Rellinghaus B, Döhring T, Stollenwerk M (2018) Influence of sputtering pressure on microstructure and layer properties of iridium thin films. Thin Solid Films 662:41–46. CrossRefGoogle Scholar
  22. 22.
    Ghalem A, Huitema L, Crunteanu A, Rammal M, Trupina L, Nedelcu L, Banciu MG, Dutheil P, Constantinescu C, Marchet P, Dumas-Bouchiat F, Champeaux C (2016) Electrical transport properties and modelling of electrostrictive resonance phenomena in Ba2/3Sr1/3TiO3 thin films. J Appl Phys 120:184101. CrossRefGoogle Scholar
  23. 23.
    Nadaud K, Borderon C, Renoud R, Ghalem A, Crunteanu A, Huitema L, Dumas-Bouchiat F, Marchet P, Champeaux C, Gundel HW (2016) Domain wall motions in BST ferroelectric thin films in the microwave frequency range. Appl Phys Lett 109:262902. CrossRefGoogle Scholar
  24. 24.
    Nadaud K, Borderon C, Renoud R, Ghalem A, Crunteanu A, Huitema L, Dumas-Bouchiat F, Marchet P, Champeaux C, Gundel HW (2017) Effect of the incident power on permittivity, losses and tunability of BaSrTiO3 thin films in the microwave frequency range. Appl Phys Lett 110:212902. CrossRefGoogle Scholar
  25. 25.
    Nadaud K, Borderon C, Renoud R, Ghalem A, Crunteanu A, Huitema L, Dumas-Bouchiat F, Marchet P, Champeaux C, Gundel HW (2018) Diffuse phase transition of BST thin films in the microwave domain. Appl Phys Lett 112:262901. CrossRefGoogle Scholar
  26. 26.
    Madsen LD, Charavel R, Birch J, Svedberg EB (2000) Assessment of MgO(1 0 0) and (1 1 1) substrate quality by X-ray diffraction. J Cryst Growth 209:91–101. CrossRefGoogle Scholar
  27. 27.
    Suzuki R, Kawaharazuka A, Horikoshi Y (2009) Effect of the MgO substrate on the growth of GaN. J Cryst Growth 311:2021–2024. CrossRefGoogle Scholar
  28. 28.
    Ishikawa T, Abe Y, Shinkai S, Sasaki K (2003) Epitaxial Ir thin film on (001) MgO single crystal prepared by sputtering. Jpn J Appl Phys 42:5747–5748. CrossRefGoogle Scholar
  29. 29.
    Chen T, Li X, Zhang S, Zhang X (2005) Comparative study of epitaxial growth of Pt and Ir electrode films grown on MgO-buffered Si(100) by PLD. Appl Phys A 80:73–76. CrossRefGoogle Scholar
  30. 30.
    Gsell S, Fischer M, Schreck M, Stritzker B (2009) “Epitaxial films of metals from the platinum group (Ir, Rh, Pt and Ru) on YSZ-buffered Si(111). J Cryst Growth 311:3731–3736. CrossRefGoogle Scholar
  31. 31.
    Trupina L, Nedelcu L, Negrila C, Banciu MG, Huitema L, Crunteanu A, Rammal M, Ghalem A (2016) Growth of highly textured iridium thin films and their stability at high temperature in oxygen atmosphere. J Mater Sci 51:8711–8717. CrossRefGoogle Scholar
  32. 32.
    Mehl MJ, Papaconstantopoulos DA (1996) Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals. Phys Rev B 54:4519–4530. CrossRefGoogle Scholar
  33. 33.
    Grundmann M, Bontgen T, Lorenz M (2010) Occurrence of rotation domains in heteroepitaxy. Phys Rev Lett 105:146102. CrossRefGoogle Scholar
  34. 34.
    Narayana J, Larson BC (2003) Domain epitaxy: a unified paradigm for thin film growth. J Appl Phys 93:278–285. CrossRefGoogle Scholar
  35. 35.
    Birkholz M (2006) Thin film analysis by X‐ray scattering. Wiley, New York. ISBN: 9783527607594
  36. 36.
    Boulle A, Guinebretiere R, Masson O, Bachelet R, Conchon F, Dauger A (2006) Recent advances in high-resolution X-ray diffractometry applied to nanostructured oxide thin films: the case of yttria stabilized zirconia epitaxially grown on sapphire. Appl Surf Sci 253:95–105. CrossRefGoogle Scholar
  37. 37.
    Boulle A, Kilburger S, Di Bin P, Millon E, Di Bin C, Guinebretiere R, Bessaudou A (2009) Role of nanostructure on the optical waveguiding properties of epitaxial LiNbO3 films. J Phys D Appl Phys 42:145403. CrossRefGoogle Scholar
  38. 38.
    Boulle A (2017) DxTools: processing large data files recorded with the Bruker D8 diffractometer. J Appl Crystallogr 50:967–974. CrossRefGoogle Scholar
  39. 39.
    Madhusudhan Rao AS, Narender K (2014) Studies on thermophysical properties of CaO and MgO by γ-ray attenuation. J Thermodyn 2014:123478. Google Scholar
  40. 40.
    Schroeder JL, Ingason AS, Rosén J, Birch J (2015) Beware of poor-quality MgO substrates: a study of MgO substrate quality and its effect on thin film quality. J Cryst Growth 420:22–31. CrossRefGoogle Scholar
  41. 41.
    de Assis TA, Aarao Reis FDA (2015) Smoothening in thin-film deposition on rough substrates. Phys Rev E 92:052405. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Materials PhysicsMagureleRomania
  2. 2.XLIM - UMR 7252, CNRSUniversity of LimogesLimogesFrance
  3. 3.IRCER - UMR 7315, CNRSUniversity of LimogesLimogesFrance

Personalised recommendations