Skip to main content
Log in

Study of transport properties in Se-deficient and Fe-intercalated NbSe2 single crystals: experiment and theory

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the magnetoresistance measurements of Se-deficient (i.e., NbSe1.85) as well as Fe-incorporated NbSe2 (Fe0.0015NbSe2) were performed to observe the effect of both intrinsic and extrinsic defect in the thermally activated flux flow region (TAFF) of NbSe2. In TAFF region, NbSe1.85 shows nonlinear response of thermal activation energy (TAE) with temperature following the modified TAFF method. For NbSe2 and Fe0.0015NbSe2, TAE depends linearly on temperature and hence was evaluated using Arrhenius relation. NbSe1.85 can be considered as the 2D-like system in the TAFF region. The magnetic field dependence of TAE shows parabolic nature in Fe0.0015NbSe2 in contrast to the power-law dependence of TAE in NbSe1.85. The power-law dependence of TAE in NbSe1.85 indicates the plastic deformation flux lines. The parabolic dependence indicates the elastic deformation of flux lines in pure as well as in Fe0.0015NbSe2. The band structures and density of states (DOS) of the above mentioned two cases were calculated using first-principle density functional theory. The number of bands and the DOS at the Fermi level decreases remarkably for both Se vacancy and Fe doping cases, indicating to the degradation of superconductivity. A peak shift in the partial density of state of Nb was observed at the Fermi level of Fe0.0015NbSe2. Spin-polarized optimization of first-principle calculations implies large Fe–Se overlaps and contradicts the Kondo mechanism due to the low concentration of Fe atoms. The spin polarization calculation indicates the negligible effect of magnetism of Fe atoms in Fe0.0015NbSe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Huang CL, Lin JY, Chang YT, Sun CP, Shen HY, Chou CC, Berger H, Lee TK, Yang HD (2007) Experimental evidence for a two-gap structure of superconducting NbSe2: a specific heat study in external magnetic fields. Phys Rev B 76:212504

    Article  Google Scholar 

  2. Ugeda MM, Bradley AJ, Zhang Y, Onishi S, Chen Y, Ruan W, Aristizabai CO, Ryu H, Edmonds MT, Tsai HZ, Riss A, Mo SK, Lee D, Jettl A, Hussain Z, Shen ZX, Crommie MF (2016) Characterization of collective ground states in single-layer NbSe2. Nat Phys 12:92–96

    Article  CAS  Google Scholar 

  3. Frindt RF (1972) Superconductivity in ultrathin NbSe2 layers. Phys Rev Lett 28:299–301

    Article  CAS  Google Scholar 

  4. Li H, Chen L, Zhang K, Liang J, Tang H, Li C, Liu X, Meng J, Wang Z (2014) Atomic structures and electronic properties of 2H-NbSe2: the impact of Ti doping. J Appl Phys 116:103709

    Article  Google Scholar 

  5. Morris RC, Young BW, Coleman RV (1974) Anisotropic Kondo resistance in Fe doped NbSe2. AIP Conf Proc 18:292–296

    Google Scholar 

  6. Luo H, Nowak JS, Li J, Tao J, Klimczuk T, Cava RJ (2017) S-shaped suppression of the superconducting transition temperature in Cu-intercalated NbSe2. Chem Mater 29:3704–3712

    Article  CAS  Google Scholar 

  7. Iavarone M, Di Capua R, Karpetrov G, Koshelev AE, Rosenmann D, Claus H, Malliakas CD, Kanatzidis MG, Nishizaki T, Kobayashi N (2008) Effect of magnetic impurities on the vortex lattice properties in NbSe2 single crystals. Phys Rev B 78:174518

    Article  Google Scholar 

  8. Coleman RV, Fleming RM, Whitney DA, Domb ER, Sellymer DJ (1976) Localized moments and magnetic interactions in Fe-doped layer compounds NbSe2 and TaSe2. AIP Conf Proc 29:400–401

    Article  CAS  Google Scholar 

  9. Hillenius SJ, Coleman RV, Domb ER, Sellmyer DJ (1979) Magnetic properties of iron-doped layer-structure dichalcogenides. Phys Rev B 19:4711–4722

    Article  CAS  Google Scholar 

  10. Lian CS, Si C, Duan W (2018) Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2. Nano Lett 18:2924–2929

    Article  CAS  Google Scholar 

  11. Blatter G, Feigel’man MV, Geshkenbein VB, Larkin AI, Vinokur VM (1994) Vortices in high-temperature superconductors. Rev Mod Phys 66:1125–1388

    Article  CAS  Google Scholar 

  12. Anderson PW (1962) Theory of flux creep in hard superconductors. Phys Rev Lett 9:309–311

    Article  Google Scholar 

  13. Kim YB, Hempstead CF, Strnad AR (1965) Flux-flow resistance in type-II superconductors. Phys Rev 139:A1163–A1172

    Article  Google Scholar 

  14. Tinkham M (1964) Viscous flow of flux in type ii superconductors. Phys Rev Lett 13:804–807

    Article  Google Scholar 

  15. Kim JJ, Lee HK, Chung J, Shin HJ, Lee HJ, Ku JK (1991) Flux-creep dissipation in epitaxial YBa2Cu3O7-δ film: magnetic-field and electrical-current dependence. Phys Rev B 43:2962–2967

    Article  CAS  Google Scholar 

  16. Palstra TTM, Batlogg B, Schneemeyer LF, Waszczak JV (1988) Thermally activated dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ. Phys Rev Lett 61:1662–1665

    Article  CAS  Google Scholar 

  17. Kaushik SD, Braccini V, Patnaik S (2008) Magnetic field dependence of vortex activation energy: a comparison between MgB2, NbSe2 and Bi2Sr2Ca2Cu3O10 superconductors. Pramana 71:1335–1343

    Article  CAS  Google Scholar 

  18. Pervin R, Krishnan M, Rana AK, Kannan M, Arumugam S, Shirage PM (2017) Enhancement of superconducting critical current density by Fe impurity substation in NbSe2 single crystals and the vortex pinning mechanism. Phys Chem Chem Phys 19:11230–11238

    Article  CAS  Google Scholar 

  19. Pervin R, Krishnan M, Rana AK, Arumugam S, Shirage PM (2018) Effect of Cr atoms in vortex dynamics of NbSe2 superconductor and study of second magnetization peak effect. Mater Res Express 5:076001

    Article  Google Scholar 

  20. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  22. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  23. Pack JD, Monkhorst HJ (1977) “Special points for Brillouin-zone integrations”-a reply. Phys Rev B 16:1748–1749

    Article  Google Scholar 

  24. Pervin R, Krishnan M, Arumugam S, Shirage PM (2019) Coexistence of superconductivity and ferromagnetism in defect-induced NbSe2 single crystals. J Mater Sci 54:11903–11912. https://doi.org/10.1007/s10853-019-03757-5

    Article  CAS  Google Scholar 

  25. Khim S, Kim JW, Choi ES, Bang Y, Nohara M, Takagi H, Kim KH (2010) Evidence for dominant Pauli paramagnetic effect in the upper critical field of single-crystalline FeTe06Se04. Phys Rev B 81:184511

    Article  Google Scholar 

  26. Anderson PW, Kim YB (1964) Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev Mod Phys 36:39–43

    Article  Google Scholar 

  27. Özçelik B, Gürsul M, Karaçora Nane F, Madre MA, Sotelo A (2018) Effect of Na-substitution on magnetoresistance and flux pinning energy of Bi-2212 ceramics prepared via hot-forging process. J Mater Sci Mater Electron 29:19147–19154

    Article  Google Scholar 

  28. Khadzhai GY, Vovk CR, Vovk RV (2017) Broadening of the superconducting transition in single crystal Y-Ba-Cu-O. J Low Temp Phys 43:1119–1121

    Article  CAS  Google Scholar 

  29. Whitney DA, Fleming RM, Coleman RV (1977) Magnetotransport and superconductivity in dilute Fe alloys of NbSe2, TaSe2, and TaS2. Phys Rev B 15:3405–3423

    Article  CAS  Google Scholar 

  30. Kang S, Goyal A, Li J, Gapud AA, Martin PM, Heatherly L, Thompson JR, Christen DK, List FA, Paranthaman M, Lee DF (2006) High-performance high-Tc superconducting wires. Science 311:1911–1914

    Article  CAS  Google Scholar 

  31. Shirage PM, Iyo A, Shivagan DD, Tanaka Y, Kito H, Kodama Y (2008) Irreversibility line and flux pinning properties in a multilayered cuprate superconductor of Ba2Ca3Cu4O8(O, F)2 (Tc = 105 K). Supercond Sci Technol 21:075014

    Article  Google Scholar 

  32. Shirage PM, Tanaka Y, Iyo A (2010) The critical current density, irreversibility line, and flux pinning properties of Ba2CaCu2O4(O, F)2 high-Tc superconductor. J Appl Phys 107:093905

    Article  Google Scholar 

  33. Zhang YZ, Ren ZA, Zhao ZX (2009) Thermally activated energy and critical magnetic fields of SmFeAsO09F01. Supercond Sci Technol 22:065012

    Article  Google Scholar 

  34. Song YJ, Kang B, Rhee JS, Kwon YS (2012) Thermally activated flux flow and fluctuation conductivity in LiFeAs single crystal. EPL 97:47003

    Article  Google Scholar 

  35. Lei H, Hu R, Choi ES, Petrovic C (2010) Thermally activated energy and flux-flow Hall effect of Fe1+y(Te1+xSx)z. Phys Rev B 82:13425

    Article  Google Scholar 

  36. Berk NF, Schrieffer JR (1966) Effect of ferromagnetic spin correlations on superconductivity. Phys Rev Lett 17:433–435

    Article  CAS  Google Scholar 

  37. Kramer EJ (1973) Scaling laws for flux pinning in hard superconductors. J Appl Phys 44:1360–1370

    Article  CAS  Google Scholar 

  38. Patnaik S, Gurevich A, Bu SD, Kaushik SD, Choi J, Eom CB, Larbalestier DC (2004) Thermally activated current transport in MgB2 films. Phys Rev B 70:064503

    Article  Google Scholar 

  39. Kierfeld J, Nordborg H, Vinokur VM (2000) Theory of plastic vortex creep. Phys Rev Lett 85:4948

    Article  CAS  Google Scholar 

  40. Leo A, Grimaldi G, Guarino A, Avitabile F, Nigro A, Galluzzi A, Mancusi D, Polichetti M, Pace S, Buchkov K, Nazarova E, Kawale S, Bellingeri E, Ferdeghini C (2015) Vortex pinning properties in Fe-chalcogenides. Supercond Sci Technol 28:125001

    Article  Google Scholar 

  41. Vinokur VM, Feigel’man MV, Geshkenbein VB, Larkin AI (1990) Resistivity of high-Tc superconductors in a vortex-liquid state. Phys Rev Lett 65:259–262

    Article  CAS  Google Scholar 

  42. Wang XL, Li AH, Yu S, Ooi S, Hirata K, Lin CT, Collings EW, Sumption MD, Bhatia M, Ding SY, Dou SX (2005) Thermally assisted flux flow and individual vortex pinning in Bi2Sr2Ca2Cu3O10 single crystals grown by the traveling solvent floating zone technique. J Appl Phys 97:10B114

    Article  Google Scholar 

  43. Choi WJ, Seo YI, Ahmad D, Kwon YS (2017) Thermal activation energy of 3D vortex matter in NaFe1−x CoxAs (x = 0.01, 0.03 and 0.07) single crystals. Sci Rep 7:10900

    Article  CAS  Google Scholar 

  44. Thompson JR, Sorge KD, Cantoni C, Kerchner HR, Christen DK, Paranthaman M (2005) Vortex pinning and slow creep in high-Jc MgB2 thin films: a magnetic and transport study. Supercond Sci Technol 18:970–976

    Article  CAS  Google Scholar 

  45. Marezio M, Dernier PD, Menth A, Hull GW Jr (1972) The crystal structure of NbSe2 at 15°K. J Solid State Chem 4:425–429

    Article  CAS  Google Scholar 

  46. Boaknin E, Tanatar MA, Paglione J, Hawthorn D, Ronning F, Hill RW, Sutherland M, Taillefer L, Sonier J, Hayden SM, Brill JW (2003) Heat conduction in the vortex state of NbSe2: evidence for multiband superconductivity. Phys Rev Lett 90:117003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (SERB-DST), India by granting a prestigious Ramanujan Fellowship (SR/S2/RJN-121/2012) and CSIR research Grant No. 03(1349)/16/EMR-II to PMS. PMS is grateful to Prof. Pradeep Mathur, Director, IIT Indore, for boosting the research work and giving the necessary facilities. The authors are thankful to SIC Indore for providing research facilities. The authors also express sincere gratitude to Dr. R. Rawat, Scientist, UGC-DAE Consortium for Scientific Research, Indore, for providing low temperature 4-probe resistivity measurement facility. The author RP thanks DST Inspire for giving meritorious fellowship (DST/INSPIRE/03/2014/004196). Abyay Ghosh acknowledges financial support from HBNI, RRCAT. Authors (AG and HG) are thankful to Dr. P. A. Naik, Director RRCAT for encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parasharam M. Shirage.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervin, R., Ghosh, A., Ghosh, H. et al. Study of transport properties in Se-deficient and Fe-intercalated NbSe2 single crystals: experiment and theory. J Mater Sci 55, 250–262 (2020). https://doi.org/10.1007/s10853-019-04002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04002-9

Profiles

  1. Rukshana Pervin
  2. Abyay Ghosh