The engineering of surface plasmon resonance and up-conversion to improve the photocatalytic performance of MIL-53(Fe) over the full solar spectrum

  • Zisheng Zhang
  • Kai Zhao
  • Xingang Li
  • Shuanglong LinEmail author
  • Hong LiEmail author
Chemical routes to materials


A novel ternary composite (Ag/CQDs/MIL-53(Fe)) with full-spectrum absorption and high photocatalytic activity was successfully synthesized for the first time. The combination between up-conversion effects of the carbon quantum dots (CQDs) and the surface plasmon resonance (SPR) effects of the Ag NPs synergistically boosts the absorption over the full solar spectrum of the Ag/CQD/MIL-53(Fe) composite. The synergistic effects of Ag NPs, CQDs and MIL-53(Fe) can effectively increase the charge separation and transfer rates. 15-Ag/CQDs/MIL-53(Fe) displayed the best photocatalytic activity, for which could degrade methylene blue at a rate of up to 93.05% within 120 min under simulated sunlight. In addition, 15-Ag/CQDs/MIL-53(Fe) has 75.75%, 76.42% and 41.48% degradation rates for MB under UV light, visible light and infrared light, respectively. The above experimental results show that Ag/CQDs/MIL-53(Fe) composite has high photocatalytic degradation efficiency over the whole solar spectrum. In addition, the charge transfer processes in the Ag/CQDs/MIL-53(Fe) degradation of organic pollutants were also deduced.



This work was funded by the National Natural Science Foundation of China (Grant No. 21476161) and the Natural Sciences and Engineering Research Council of Canada (Discovery).

Author contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_3995_MOESM1_ESM.docx (972 kb)
Supplementary material 1 (DOCX 972 kb)


  1. 1.
    Qin J, Zeng H (2017) Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Appl Catal B 209:161–173CrossRefGoogle Scholar
  2. 2.
    Wang R, Lu KQ, Tang ZR, Xu YJ (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5:3717–3734CrossRefGoogle Scholar
  3. 3.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714CrossRefGoogle Scholar
  4. 4.
    Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129CrossRefGoogle Scholar
  5. 5.
    Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932CrossRefGoogle Scholar
  6. 6.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459CrossRefGoogle Scholar
  7. 7.
    Laurier KGM, Vermoortele F, Ameloot R, De Vos DE, Hofkens J, Roeffaers MBJ (2013) Iron(III)-based metal-organic frameworks as visible light photocatalysts. J Am Chem Soc 135:14488–14491CrossRefGoogle Scholar
  8. 8.
    Nasalevich MA, van der Veen M, Kapteijn F, Gascon J (2014) Metal-organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm 16:4919–4926CrossRefGoogle Scholar
  9. 9.
    Zhang C, Ai L, Jiang J (2015) Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine B under visible light. Ind Eng Chem Res 54:153–163CrossRefGoogle Scholar
  10. 10.
    Wang S, Wang X (2015) Multifunctional metal-organic frameworks for photocatalysis. Small 11:3097–3112CrossRefGoogle Scholar
  11. 11.
    Li Y, Xu H, Ouyang S, Ye J (2016) Metal-organic frameworks for photocatalysis. Phys Chem Chem Phys 18:7563–7572CrossRefGoogle Scholar
  12. 12.
    Wang CC, Li JR, Lv XL, Zhang YQ, Guo G (2014) Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ Sci 7:2831–2867CrossRefGoogle Scholar
  13. 13.
    Pu M, Guan Z, Ma Y et al (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of orange G in aqueous solution. Appl Cata A 549:82–92CrossRefGoogle Scholar
  14. 14.
    Ai L, Zhang C, Li L, Jiang J (2014) Iron terephthalate metal-organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B 148:191–200CrossRefGoogle Scholar
  15. 15.
    Zhang C, Ai L, Jiang J (2015) Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J Mater Chem A 3:3074–3081CrossRefGoogle Scholar
  16. 16.
    Hu L, Zhang Y, Lu W, Lu Y, Hu H (2019) Easily recyclable photocatalyst Bi2WO6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation. J Mater Sci 54:6238–6257. CrossRefGoogle Scholar
  17. 17.
    Cushing SK, Li J, Meng F et al (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134:15033–15041CrossRefGoogle Scholar
  18. 18.
    Li J, Cushing SK, Bright J et al (2013) Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal 3:47–51CrossRefGoogle Scholar
  19. 19.
    Bai YY, Wang FR, Liu JK (2016) A new complementary catalyst and catalytic mechanism: Ag2MoO4/Ag/AgBr/GO heterostructure. Ind Eng Chem Res 55:9873–9879CrossRefGoogle Scholar
  20. 20.
    Jin L, Zhu G, Hojamberdiev M et al (2014) A plasmonic Ag–AgBr/Bi2O2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 53:13718–13727CrossRefGoogle Scholar
  21. 21.
    Bu Y, Chen Z, Li W (2014) Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl Catal B 144:622–630CrossRefGoogle Scholar
  22. 22.
    Leong KH, Liu SL, Sim LC, Saravanan P, Jang M, Ibrahim S (2015) Surface reconstruction of titania with g-C3N4 and Ag for promoting efficient electrons migration and enhanced visible light photocatalysis. Appl Surf Sci 358:370–376CrossRefGoogle Scholar
  23. 23.
    Ren S, Zhao G, Wang Y, Wang B, Wang Q (2015) Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region. Nanotechnology 26:125403CrossRefGoogle Scholar
  24. 24.
    Liu Q, Zeng C, Ai L, Hao Z, Jiang J (2018) Boosting visible light photoreactivity of photoactive metal-organic framework: designed plasmonic Z-scheme Ag/AgCl@MIL-53-Fe. Appl Catal B 224:38–45CrossRefGoogle Scholar
  25. 25.
    Sofi FA, Majid K, Mehraj O (2018) The visible light driven copper based metal-organic-framework heterojunction:HKUST-1@Ag-Ag3PO4 for plasmon enhanced visible light photocatalysis. J Alloys Compd 737:798–808CrossRefGoogle Scholar
  26. 26.
    Liu J, Xu H, Xu Y et al (2017) Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity. Appl Catal B 207:429–437CrossRefGoogle Scholar
  27. 27.
    Wang Q, Zhu N, Liu E et al (2017) Fabrication of visible-light active Fe2O3-GQDs/NF-TiO2 composite film with highly enhanced photoelectrocatalytic performance. Appl Catal B 205:347–356CrossRefGoogle Scholar
  28. 28.
    Zhou Y, Zhang L, Huang W et al (2016) N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 99:111–117CrossRefGoogle Scholar
  29. 29.
    Khan UA, Liu J, Pan J et al (2018) Fabrication of highly efficient and hierarchical CdS QDs/CQDs/H-TiO2 ternary heterojunction: surpassable photocatalysis under sun-like illumination. Ind Eng Chem Res 58:79–91CrossRefGoogle Scholar
  30. 30.
    Yu H, Zhao Y, Zhou C et al (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2:3344–3351CrossRefGoogle Scholar
  31. 31.
    Zhang X, Wang F, Huang H et al (2013) Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale 5:2274–2278CrossRefGoogle Scholar
  32. 32.
    Amjadi M, Abolghasemi-Fakhri Z, Hallaj T (2015) Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J Photochem Photobiol A 309:8–14CrossRefGoogle Scholar
  33. 33.
    Ming F, Hong J, Xu X, Wang Z (2016) Dandelion-like ZnS/carbon quantum dots hybrid materials with enhanced photocatalytic activity toward organic pollutants. RSC Adv 6:31551–31558CrossRefGoogle Scholar
  34. 34.
    Gao X, Lu Y, Zhang R et al (2015) One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J Mater Chem C 3:2302–2309CrossRefGoogle Scholar
  35. 35.
    Jahanbakhshi M, Habibi B (2016) A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: application to electroanalytical determination of H2O2 in fetal bovine serum. Biosens Bioelectron 81:143–150CrossRefGoogle Scholar
  36. 36.
    Tian J, Leng Y, Zhao Z et al (2015) Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 11:419–427CrossRefGoogle Scholar
  37. 37.
    Han X, Han Y, Huang H et al (2013) Synthesis of carbon quantum dots/SiO2 porous nanocomposites and their catalytic ability for photo-enhanced hydrocarbon selective oxidation. Dalton Trans 42:10380–10383CrossRefGoogle Scholar
  38. 38.
    Wang G, Zhang W, Li J, Dong X, Zhang X (2019) Carbon quantum dots decorated BiVO4 quantum tube with enhanced photocatalytic performance for efficient degradation of organic pollutants under visible and near-infrared light. J Mater Sci 54:6488–6499. CrossRefGoogle Scholar
  39. 39.
    Du JJ, Yuan YP, Sun JX et al (2011) New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951CrossRefGoogle Scholar
  40. 40.
    Ming H, Ma Z, Liu Y et al (2012) Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans 41:9526–9531CrossRefGoogle Scholar
  41. 41.
    Ai L, Li L, Zhang C, Fu J, Jiang J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem Eur J 19:15105–15108CrossRefGoogle Scholar
  42. 42.
    Xu Y, Xu H, Li H, Xia J, Liu C, Liu L (2011) Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. J Alloys Compd 509:3286–3292CrossRefGoogle Scholar
  43. 43.
    Deng Y, Tang L, Feng C et al (2017) Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: full-spectrum response ability and mechanism insight. ACS Appl Mater Interfaces 9:42816–42828CrossRefGoogle Scholar
  44. 44.
    Yu C, Zhou W, Zhu L, Li G, Yang K, Jin R (2016) Integrating plasmonic Au nanorods with dendritic like alpha-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Appl Catal B 184:1–11CrossRefGoogle Scholar
  45. 45.
    Zhang J, Ma Y, Du Y, Jiang H, Zhou D, Dong S (2017) Carbon nanodots/WO3 nanorods Z-scheme composites: remarkably enhanced photocatalytic performance under broad spectrum. Appl Catal B 209:253–264CrossRefGoogle Scholar
  46. 46.
    Madhusudan P, Ran J, Zhang J, Yu J, Liu G (2011) Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Appl Catal B 110:286–295CrossRefGoogle Scholar
  47. 47.
    Li J, Wang N, Tran TT et al (2013) Electrogenerated chemiluminescence detection of trace level pentachlorophenol using carbon quantum dots. Analyst 138:2038–2043CrossRefGoogle Scholar
  48. 48.
    Habibi B, Jahanbakhshi M (2014) A novel nonenzymatic hydrogen peroxide sensor based on the synthesized mesoporous carbon and silver nanoparticles nanohybrid. Sens Actuators, B 203:919–925CrossRefGoogle Scholar
  49. 49.
    Liang R, Jing F, Shen L, Qin N, Wu L (2015) MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J Hazard Mater 287:364–372CrossRefGoogle Scholar
  50. 50.
    Horcajada P, Serre C, Maurin G et al (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130:6774–6780CrossRefGoogle Scholar
  51. 51.
    Banerjee A, Gokhale R, Bhatnagar S et al (2012) MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J Mater Chem 22:19694–19699CrossRefGoogle Scholar
  52. 52.
    Gong CR, Chen DR, Jiao XL, Wang QL (2002) Continuous hollow alpha-Fe2O3 and alpha-Fe fibers prepared by the sol-gel method. J Mater Chem 12:1844–1847CrossRefGoogle Scholar
  53. 53.
    Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 4:6927–6945CrossRefGoogle Scholar
  54. 54.
    Shen L, Chen M, Hu L, Chen X, Wang J (2013) Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir 29:16135–16140CrossRefGoogle Scholar
  55. 55.
    Qian X, Yue D, Tian Z et al (2016) Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Appl Catal B 193:16–21CrossRefGoogle Scholar
  56. 56.
    Yu BY, Kwak S-Y (2012) Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts. J Mater Chem 22:8345–8353CrossRefGoogle Scholar
  57. 57.
    Candal RJ, Zeltner WA, Anderson MA (2000) Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environ Sci Technol 34:3443–3451CrossRefGoogle Scholar
  58. 58.
    Wang F, Chen P, Feng Y et al (2017) Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin. Appl Catal B 207:103–113CrossRefGoogle Scholar
  59. 59.
    Ma Y, Xu H, Zeng Y et al (2015) A charged iridophosphor for time-resolved luminescent CO2 gas identification. J Mater Chem C 3:66–72CrossRefGoogle Scholar
  60. 60.
    Bai S, Ge J, Wang L et al (2014) A unique semiconductor-metal-graphene stack design to harness charge flow for photocatalysis. Adv Mater 26:5689–5695CrossRefGoogle Scholar
  61. 61.
    Chen J, Che H, Huang K, Liu C, Shi W (2016) Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants. Appl Catal B 192:134–144CrossRefGoogle Scholar
  62. 62.
    Laurier KGM, Fron E, Atienzar P et al (2014) Delayed electron-hole pair recombination in iron(III)-oxo metal-organic frameworks. Phys Chem Chem Phys 16:5044–5047CrossRefGoogle Scholar
  63. 63.
    Hou J, Cheng H, Yang C, Takeda O, Zhu H (2015) Hierarchical carbon quantum dots/hydrogenated-gamma-TaON heterojunctions for broad spectrum photocatalytic performance. Nano Energy 18:143–153CrossRefGoogle Scholar
  64. 64.
    Ma L, Fan H, Wang J, Zhao Y, Tian H, Dong G (2016) Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance. Appl Catal B 190:93–102CrossRefGoogle Scholar
  65. 65.
    Zhang H, Huang H, Ming H et al (2012) Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J Mater Chem 22:10501–10506CrossRefGoogle Scholar
  66. 66.
    Daniel LS, Nagai H, Sato M (2013) Absorption spectra and photocurrent densities of Ag nanoparticle/TiO2 composite thin films with various amounts of Ag. J Mater Sci 48:7162–7170. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Department of Chemical & Biological EngineeringUniversity of OttawaOttawaCanada
  3. 3.National Engineering Research Center of Distillation TechnologyTianjinPeople’s Republic of China

Personalised recommendations