Skip to main content
Log in

Substrate effects on the CVD growth of MoS2 and WS2

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD)-grown 2D materials like MoS2 and WS2 have been widely used for research and application. Here, we study substrates’ effects on CVD-grown MoS2 and WS2. The morphology, crystalline quality and optical properties have been modified while changing substrates, which can be derived from lattice matching between 2D materials and substrate, defect/impurities on the interface and conductance/transparency of different substrates. The results provide suggestion for further study in CVD growth of 2D materials and device fabrications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhou J et al (2018) A library of atomically thin metal chalcogenides. Nature 556(7701):355–359

    Article  CAS  Google Scholar 

  2. Su L et al (2014) Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale 6(9):4920–4927

    Article  CAS  Google Scholar 

  3. Hu Y et al (2018) Straining effects in MoS2 monolayer on nanostructured substrates: temperature-dependent photoluminescence and exciton dynamics. Nanoscale 10(12):5717–5724

    Article  CAS  Google Scholar 

  4. Sundaram RS et al (2013) Electroluminescence in single layer MoS2. Nano Lett 13(4):1416–1421

    Article  CAS  Google Scholar 

  5. Scheuschner N et al (2014) Photoluminescence of free-standing single- and few-layer MoS2. Phys Rev B 89(12):125406

    Article  Google Scholar 

  6. Peng ZJ, Cheng T, Nie XY (2012) MoS2/Al2O3 composite coatings on A356 alloy for friction reduction. In: Xu B, Li HY (eds) Functional materials and nanotechnology. Trans Tech Publications Ltd, Stafa, pp 488–492

    Google Scholar 

  7. Yin Z et al (2012) Single-layer MoS2 phototransistors. ACS Nano 6(1):74–80

    Article  CAS  Google Scholar 

  8. Radisavljevic B et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150

    Article  CAS  Google Scholar 

  9. Qin M et al (2019) Synthesis of single-component metal oxides with controllable multi-shelled structure and their morphology-related applications. Chem Rec. https://doi.org/10.1002/tcr.201900017

    Article  Google Scholar 

  10. Yin H et al (2019) 2D gold supercrystal–MoS2 hybrids: photoluminescence quenching. Mater Lett. https://doi.org/10.1016/j.matlet.2019.126531

    Article  Google Scholar 

  11. Ning MQ et al (2019) Layer by layer 2D MoS2/rGO hybrids: an optimized microwave absorber for high-efficient microwave absorption. Appl Surf Sci 470:899–907

    Article  CAS  Google Scholar 

  12. Yang L, Guo S, Li X (2017) Au nanoparticles@MoS2 core-shell structures with moderate MoS2 coverage for efficient photocatalytic water splitting. J Alloys Compd 706:82–88

    Article  CAS  Google Scholar 

  13. Hong S et al (2017) Computational synthesis of MoS2 layers by reactive molecular dynamics simulations: initial sulfidation of MoO3 surfaces. Nano Lett 17(8):4866–4872

    Article  CAS  Google Scholar 

  14. Kim JY et al (2018) Energy and charge transfer effects in two-dimensional van der Waals hybrid nanostructures on periodic gold nanopost array. Appl Phys Lett 112(19):193101

    Article  Google Scholar 

  15. Liu KK et al (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 12(3):1538–1544

    Article  CAS  Google Scholar 

  16. Cong CX et al (2014) Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv Opt Mater 2(2):131–136

    Article  Google Scholar 

  17. Liao MZ et al (2018) Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat Commun 9(1):4068–4073

    Article  Google Scholar 

  18. Amani M et al (2014) Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl Phys Lett 104(20):203506

    Article  Google Scholar 

  19. Chae WH et al (2017) Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Appl Phys Lett 111(14):143106

    Article  Google Scholar 

  20. Liu Y, Yu Y-X, Zhang W-D (2013) MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: the role of MoS2. J Phys Chem C 117(25):12949–12957

    Article  CAS  Google Scholar 

  21. Lee YH et al (2013) Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett 13(4):1852–1857

    Article  CAS  Google Scholar 

  22. Lin Y et al (2014) Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett 14(10):5569–5576

    Article  CAS  Google Scholar 

  23. Lee YH et al (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325

    Article  CAS  Google Scholar 

  24. Han ZJ et al (2018) Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Mater 5(3):032002

    Article  Google Scholar 

  25. Bhanu U et al (2014) Photoluminescence quenching in gold–MoS2 hybrid nanoflakes. Sci Rep 4:5575

    Article  CAS  Google Scholar 

  26. Liu J et al (2019) Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application. Compos B Eng 176:107240

    Article  CAS  Google Scholar 

  27. Zheng W et al (2017) Controlled growth of six-point stars MoS2 by chemical vapor deposition and its shape evolution mechanism. Nanotechnology 28(39):395601

    Article  Google Scholar 

  28. Lan D et al (2019) Synthesis, characterization and microwave transparent properties of Mn3O4 microspheres. J Mater Sci 30:8771–8776. https://doi.org/10.1007/s10854-019-01201-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51701177, 51771170) and the Yunnan Applied Basic Research Project (2017FB080, 2018FB090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfen Wan, Mingzai Wu or Peng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Zhang, X., Lu, J. et al. Substrate effects on the CVD growth of MoS2 and WS2. J Mater Sci 55, 990–996 (2020). https://doi.org/10.1007/s10853-019-03993-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03993-9

Navigation