Skip to main content

Advertisement

Log in

A review of natural fiber composites: properties, modification and processing techniques, characterization, applications

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

There has been much effort to provide eco-friendly and biodegradable materials for the next generation of composite products owing to global environmental concerns and increased awareness of renewable green resources. An increase in the use of natural materials in composites has led to a reduction in greenhouse gas emissions and carbon footprint of composites. In addition to the benefits obtained from green materials, there are some challenges in working with them, such as poor compatibility between the reinforcing natural fiber and matrix and the relatively high moisture absorption of natural fibers. Green composites can be a suitable alternative for petroleum-based materials. However, before this can be accomplished, there are a number of issues that need to be addressed, including poor interfacial adhesion between the matrix and natural fibers, moisture absorption, poor fire resistance, low impact strength, and low durability. Several researchers have studied the properties of natural fiber composites. These investigations have resulted in the development of several procedures for modifying natural fibers and resins. To address the increasing demand to use eco-friendly materials in different applications, an up-do-date review on natural fiber and resin types and sources, modification and processing techniques, physical and mechanical behaviors, applications, life-cycle assessment, and other properties of green composites is required to provide a better understanding of the behavior of green composites. This paper presents such a review based on 322 studies published since 1978.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42

Similar content being viewed by others

References

  1. Campilho RDSG (2015) Natural fiber composites. CRC Press, Boca Raton

    Google Scholar 

  2. Alix S, Colasse L, Morvan C, Lebrun L, Marais S (2014) Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres. Carbohydr Polym 102:21–29

    CAS  Google Scholar 

  3. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25

    CAS  Google Scholar 

  4. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Poly Sci 37(11):1552–1596

    CAS  Google Scholar 

  5. Madsen B, Gamstedt EK (2013) Wood versus plant fibers: similarities and differences in composite applications. Adv Mater Sci Eng 2013:1–14

    Google Scholar 

  6. Rana AK, Mandal A, Bandyopadhyay S (2003) Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos Sci Technol 63(6):801–806

    CAS  Google Scholar 

  7. Jawaid M, Khalil HPSA (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18

    CAS  Google Scholar 

  8. Stamboulis A, Baillie CA, Peijs T (2001) Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos Part A Appl Sci Manuf 32(8):1105–1115

    Google Scholar 

  9. Summerscales J (2018) Bast fibres and their composites. University of Plymouth, UK, https://www.fose1.plymouth.ac.uk/sme/mats347/bast_book.htm, Accessed 10 Aug 2019

  10. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    CAS  Google Scholar 

  11. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    CAS  Google Scholar 

  12. Zini E, Scandola M (2011) Green composites: an overview. Polym Compos 32(12):1905–1915

    CAS  Google Scholar 

  13. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos Part A Appl Sci Manuf 42(6):579–588

    Google Scholar 

  14. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42(4):856–873

    Google Scholar 

  15. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43(8):1419–1429

    Google Scholar 

  16. Khalil HPSA, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Google Scholar 

  17. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B Eng 44(1):120–127

    CAS  Google Scholar 

  18. Nguong CW, Lee SNB, Debnath S (2013) A review on natural fibre reinforced polymer composites. World Acad Sci Eng Technol 7:1123–1130

    Google Scholar 

  19. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26

    CAS  Google Scholar 

  20. Satyanarayana KG (2015) Recent developments in ‘green’ composites based on plant fibers-preparation, structure property studies. J Bioprocess Biotech 5(206):1–12

    Google Scholar 

  21. Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1–15

    Google Scholar 

  22. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112

    CAS  Google Scholar 

  23. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581

    CAS  Google Scholar 

  24. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci 2011:1–35

    Google Scholar 

  25. Mokhtar M (2007) Characterization and treatments of pineapple leaf fibre thermoplastic composite for construction application. Universiti Teknologi Malaysia, Johor Bahru

    Google Scholar 

  26. Alamri H, Low IM (2012) Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polym Test 31(5):620–628

    CAS  Google Scholar 

  27. Masoodi R, Pillai KM (2012) A study on moisture absorption and swelling in bio-based jute-epoxy composites. J Reinf Plast Compos 31(5):285–294

    CAS  Google Scholar 

  28. Khalil HPSA, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Google Scholar 

  29. Chandramohan D, Marimuthu K (2011) A review on natural fibers. Int J Res Rev Appl Sci 8(2):194–206

    Google Scholar 

  30. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55(1):107–162

    CAS  Google Scholar 

  31. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343

    CAS  Google Scholar 

  32. Foulk JA, McAlister Iii DD (2002) Single cotton fiber properties of low, ideal, and high micronaire values. Text Res J 72(10):885–891

    CAS  Google Scholar 

  33. Mohanty AK, Misra M (1995) Studies on jute composites—a literature review. Polym Plast Technol Eng 34(5):729–792

    CAS  Google Scholar 

  34. Biswas S, Srikanth G, Nangia S (2001) Development of natural fibre composites in India. In: Proceedings of annual convention & trade show, Composites, Composites Fabricator’s Association at Tampa, Florida, USA, October 03–06

  35. Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites–a review. Compos Part B Eng 56:296–317

    CAS  Google Scholar 

  36. Shahzad A (2012) Hemp fiber and its composites—a review. J Compos Mater 46(8):973–986

    CAS  Google Scholar 

  37. Li Y, Mai Y-W, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055

    CAS  Google Scholar 

  38. Akil H, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121

    CAS  Google Scholar 

  39. Jayavani S, Deka H, Varghese TO, Nayak SK (2016) Recent development and future trends in coir fiber-reinforced green polymer composites: review and evaluation. Polym Compos 11(37):3296–3309

    Google Scholar 

  40. Pandey SN (2007) Ramie fibre: part I. Chemical composition and chemical properties. A critical review of recent developments. Text Prog 39(1):1–66

    Google Scholar 

  41. Balaji A, Karthikeyan B, Raj CS (2014) Bagasse fiber–the future biocomposite material: a review. Int J Cemtech Res 7(1):223–233

    CAS  Google Scholar 

  42. Sanadi AR, Caulfield DF, Jacobson RE, Rowell RM (1995) Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of kenaf fiber-polypropylene composites. Ind Eng Chem Res 34(5):1889–1896

    CAS  Google Scholar 

  43. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton

    Google Scholar 

  44. Hattalli S, Benaboura A, Ham-Pichavant F, Nourmamode A, Castellan A (2002) Adding value to Alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins 1. Lignin characterization. Polym Degrad Stab 76(2):259–264

    CAS  Google Scholar 

  45. Hoareau W, Trindade WG, Siegmund B, Castellan A, Frollini E (2004) Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polym Degrad Stab 86(3):567–576

    CAS  Google Scholar 

  46. Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189

    CAS  Google Scholar 

  47. Martí-Ferrer F, Vilaplana F, Ribes-Greus A, Benedito-Borrás A, Sanz-Box C (2006) Flour rice husk as filler in block copolymer polypropylene: effect of different coupling agents. J Appl Polym Sci 99(4):1823–1831

    Google Scholar 

  48. Rowell RM (2008) Natural fibres: types and properties. In: Pickering K (ed) Properties and performance of natural-fibre composites. Elsevier, Amsterdam, pp 3–66

    Google Scholar 

  49. Baeurle SA, Hotta A, Gusev AA (2006) On the glassy state of multiphase and pure polymer materials. Polymer 47(17):6243–6253

    CAS  Google Scholar 

  50. Lokensgard E (2016) Industrial plastics: theory and applications, 6th edn. Cengage Learning, p 544

  51. Sinha R (2004) Outlines of polymer technology: manufacture of polymers. Prentice Hall of India Private Limited, India, New Delhi

    Google Scholar 

  52. Mohammad NAB (2007) Synthesis, characterization, and properties of the new unsaturated polyester resins for composite applications. MARA University of Technology, pp 45–56

  53. Iijima T, Tochimoto T, Tomoi M (1991) Modification of epoxy resins with poly (aryl ether ketone) s. J Appl Polym Sci 43(9):1685–1692

    CAS  Google Scholar 

  54. Mukherjee RN, Pal SK, Sanyal SK, Phani KK (1984) Role of interface in fibre reinforced polymer composites with special reference to natural fibres. J Polym Mater 1:69–81

    Google Scholar 

  55. Pritchard G (2012) Developments in reinforced plastics—4. Elsevier Applied Science Publishers, New York

    Google Scholar 

  56. Sarkar BK, Roy R, Ray D (1997) Emerging dominance of composites as a structural material. J Inst Eng India Part MM Metall Mater Sci Div 78:31–37

    Google Scholar 

  57. Bastioli C (2001) Global status of the production of biobased packaging materials. Starch-Stärke 53(8):351–355

    CAS  Google Scholar 

  58. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26(9):1605–1688

    CAS  Google Scholar 

  59. TiaGe Volova (2004) Polyhydroxyalkanoates—plastic materials of the 21st century: production, properties, applications. Nova Publishers, New York

    Google Scholar 

  60. Sharma SK, Mudhoo A (2011) A handbook of applied biopolymer technology: synthesis, degradation and applications. Royal Society of Chemistry, London

    Google Scholar 

  61. PolymerOhio (2015) Bio-based resins: a growing opportunity for bioplastics packaging. Polymers PolymerOhio

  62. Kuruppalil Z (2011) Green plastics: an emerging alternative for petroleum-based plastics. Int J Eng Res Innov 3(1):59–64

    Google Scholar 

  63. Lilholt H, Lawther JM (2000) Natural organic fibers. In: Kelly A, Zweben C (eds) Comprehensive composite materials, vol 1. Elsevier Science, Amsterdam

    Google Scholar 

  64. Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos Sci Technol 60(15):2857–2863

    CAS  Google Scholar 

  65. Bataille P, Dufourd M, Sapieha S (1994) Copolymerization of styrene on to cellulose activated by corona. Polym Int 34(4):387–391

    CAS  Google Scholar 

  66. Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a review. J Thermoplast Compos Mater 22(2):135–162

    CAS  Google Scholar 

  67. Marais S, Gouanvé F, Bonnesoeur A, Grenet J, Poncin-Epaillard F, Morvan C, Métayer M (2005) Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos Part A Appl Sci Manuf 36(7):975–986

    Google Scholar 

  68. Martin AR, Manolache S, Mattoso LHC, Rowell RM, Denes F Plasma modification of sisal and high-density polyethylene composites: effect on mechanical properties. In, 2000 2000

  69. di Benedetto RM, Gelfuso MV, Thomazini D (2015) Influence of UV radiation on the physical-chemical and mechanical properties of banana fiber. Mater Res 18:265–272

    Google Scholar 

  70. Beg MDH, Pickering KL (2008) Mechanical performance of Kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos Part A Appl Sci Manuf 39(11):1748–1755

    Google Scholar 

  71. Cao Y, Sakamoto S, Goda K (2007) Effects of heat and alkali treatments on mechanical properties of kenaf fibers. In: 16th international conference on composite materials, Kyoto, Japan, vol 1, pp 8–13

  72. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447

    CAS  Google Scholar 

  73. Singh B, Gupta M, Verma A (1996) Influence of fiber surface treatment on the properties of sisal-polyester composites. Polym Compos 17(6):910–918

    CAS  Google Scholar 

  74. Ray D, Sarkar BK, Rana AK, Bose NR (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos Part A Appl Sci Manuf 32(1):119–127

    CAS  Google Scholar 

  75. Iannace S, Ali R, Nicolais L (2001) Effect of processing conditions on dimensions of sisal fibers in thermoplastic biodegradable composites. J Appl Polym Sci 79(6):1084–1091

    CAS  Google Scholar 

  76. Walker JCF (2006) Primary wood processing: principles and practice. Springer, Berlin

    Google Scholar 

  77. Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79(4):832–838

    Google Scholar 

  78. Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1–polyester resin matrix. Compos Sci Technol 64(9):1219–1230

    CAS  Google Scholar 

  79. Suardana NPG, Piao Y, Lim JK (2011) Mechanical properties of hemp fibers and hemp/pp composites: effects of chemical surface treatment. Mater Phys Mech 11(1):1–8

    CAS  Google Scholar 

  80. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2(6):413–422

    CAS  Google Scholar 

  81. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Google Scholar 

  82. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl Sci Manuf 36(8):1110–1118

    Google Scholar 

  83. Zafeiropoulos NE, Baillie CA (2007) A study of the effect of surface treatments on the tensile strength of flax fibres: part II. Application of Weibull statistics. Compos Part A Appl Sci Manuf 38(2):629–638

    Google Scholar 

  84. Manikandan Nair KC, Diwan SM, Thomas S (1996) Tensile properties of short sisal fiber reinforced polystyrene composites. J Appl Polym Sci 60(9):1483–1497

    Google Scholar 

  85. Wang B, Panigrahi S, Tabil L, Crerar W (2007) Pre-treatment of flax fibers for use in rotationally molded biocomposites. J Reinf Plast Compos 26(5):447–463

    CAS  Google Scholar 

  86. Joseph K, Mattoso LHC, Toledo RD, Thomas S, De Carvalho LH, Pothen L, Kala S, James B (2000) Natural fiber reinforced thermoplastic composites. Nat Polym Agrofibers Compos 159:159–201

    Google Scholar 

  87. Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos Part A Appl Sci Manuf 34(3):253–266

    Google Scholar 

  88. Aranberri-Askargorta I, Lampke T, Bismarck A (2003) Wetting behavior of flax fibers as reinforcement for polypropylene. J Colloid Interface Sci 263(2):580–589

    CAS  Google Scholar 

  89. Bismarck A, Aranberri-Askargorta I, Springer J, Lampke T, Wielage B, Stamboulis A, Shenderovich I, Limbach HH (2002) Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polym Compos 23(5):872–894

    CAS  Google Scholar 

  90. Fuqua MA, Ulven CA (2008) Characterization of polypropylene/corn fiber composites with maleic anhydride grafted polypropylene. J Biobased Mater Bioenergy 2(3):258–263

    Google Scholar 

  91. Hong CK, Kim N, Kang SL, Nah C, Lee YS, Cho BH, Ahn JH (2008) Mechanical properties of maleic anhydride treated jute fibre/polypropylene composites. Plast, Rubber Compos 37(7):325–330

    CAS  Google Scholar 

  92. Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84(2):331–339

    CAS  Google Scholar 

  93. Li X, Panigrahi S, Tabil LG (2009) A study on flax fiber-reinforced polyethylene biocomposites. Appl Eng Agric 25(4):525–531

    CAS  Google Scholar 

  94. Vilay V, Mariatti M, Taib RM, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber—reinforced unsaturated polyester composites. Compos Sci Technol 68(3–4):631–638

    CAS  Google Scholar 

  95. Sreekala MS, Kumaran MG, Joseph S, Jacob M, Thomas S (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7(5–6):295–329

    CAS  Google Scholar 

  96. George J, Janardhan R, Anand JS, Bhagawan SS, Thomas S (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37(24):5421–5431

    CAS  Google Scholar 

  97. Paul SA, Oommen C, Joseph K, Mathew G, Thomas S (2010) The role of interface modification on thermal degradation and crystallization behavior of composites from commingled polypropylene fiber and banana fiber. Polym Compos 31(6):1113–1123

    CAS  Google Scholar 

  98. Zafeiropoulos NE, Baillie CA, Hodgkinson JM (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface. Compos Part A Appl Sci Manuf 33(9):1185–1190

    Google Scholar 

  99. Corrales F, Vilaseca F, Llop M, Girones J, Mendez JA, Mutje P (2007) Chemical modification of jute fibers for the production of green-composites. J Hazard Mater 144(3):730–735

    CAS  Google Scholar 

  100. Li X, Panigrahi SA, Tabil LG, Crerar WJ (2004) Flax fiber-reinforced composites and the effect of chemical treatments on their properties. In: ASAE/CSAE North Central regional annual meeting, Manitoba, Canada, September 24–25 2004. ASAE, pp 1–10

  101. Zadorecki P, Flodin P (1985) Surface modification of cellulose fibers. II. The effect of cellulose fiber treatment on the performance of cellulose–polyester composites. J Appl Polym Sci 30(10):3971–3983

    CAS  Google Scholar 

  102. Pickering KL, Li Y, Farrell RL, Lay M (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bioenergy 1(1):109–117

    Google Scholar 

  103. Chabba S, Netravali AN (2004) ‘Green’composites using modified soy protein concentrate resin and flax fabrics and yarns. JSME Int J Ser A Solid Mech Mater Eng 47(4):556–560

    CAS  Google Scholar 

  104. Kumar R, Zhang L (2008) Water-induced hydrophobicity of soy protein materials containing 2, 2-diphenyl-2-hydroxyethanoic acid. Biomacromol 9(9):2430–2437

    CAS  Google Scholar 

  105. Kumar R, Zhang L (2009) Soy protein films with the hydrophobic surface created through non-covalent interactions. Ind Crops Prod 29(2–3):485–494

    CAS  Google Scholar 

  106. Newill JR, McKnight SH, Hoppel CP, Cooper GR (1999) Effects of coatings on moisture absorption in composite materials. Army Research Lab Aberdeen Proving Ground MD, US

    Google Scholar 

  107. Doherty W, Halley P, Edye L, Rogers D, Cardona F, Park Y, Woo T (2007) Studies on polymers and composites from lignin and fiber derived from sugar cane. Polym Adv Technol 18(8):673–678

    CAS  Google Scholar 

  108. Stark NM (1999) Wood fiber derived from scrap pallets used in polypropylene composites. For Prod J 49:39–46

    CAS  Google Scholar 

  109. Araujo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775

    CAS  Google Scholar 

  110. Yildiz S, Gezer ED, Yildiz UC (2006) Mechanical and chemical behavior of spruce wood modified by heat. Build Environ 41(12):1762–1766

    Google Scholar 

  111. Chand N, Dwivedi UK (2006) Effect of coupling agent on abrasive wear behaviour of chopped jute fibre-reinforced polypropylene composites. Wear 261(10):1057–1063

    CAS  Google Scholar 

  112. Corradini E, Ito EN, Marconcini JM, Rios CT, Agnelli JAM, Mattoso LHC (2009) Interfacial behavior of composites of recycled poly (ethyelene terephthalate) and sugarcane bagasse fiber. Polym Test 28(2):183–187

    CAS  Google Scholar 

  113. Elkington M, Bloom D, Ward C, Chatzimichali A, Potter K (2015) Hand layup: understanding the manual process. Adv Manuf Polym Compos Sci 1(3):138–151

    Google Scholar 

  114. Kumar AP, Singh RP, Sarwade BD (2005) Degradability of composites, prepared from ethylene–propylene copolymer and jute fiber under accelerated aging and biotic environments. Mater Chem Phys 92(2–3):458–469

    CAS  Google Scholar 

  115. Mulinari DR, Voorwald HJC, Cioffi MOH, Da Silva MLCP, da Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69(2):214–219

    CAS  Google Scholar 

  116. Richardson MOW, Zhang ZY (2000) Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos Part A Appl Sci Manuf 31(12):1303–1310

    Google Scholar 

  117. Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Techno 64(5):629–644

    CAS  Google Scholar 

  118. Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol 66(7–8):895–906

    CAS  Google Scholar 

  119. Santos PA, Spinacé MAS, Fermoselli KKG, De Paoli M-A (2007) Polyamide-6/vegetal fiber composite prepared by extrusion and injection molding. Compos Part A Appl Sci Manuf 38(12):2404–2411

    Google Scholar 

  120. Scherübl B, Hintermann M (2005) Application of natural fibre reinforced plastics for automotive exterior parts, with a focus on underfloor systems. In: Proceedings of the 8th international AVK-TV conference, Baden, Germany, 2005. p D5

  121. Van Voorn B, Smit HHG, Sinke RJ, De Klerk B (2001) Natural fibre reinforced sheet moulding compound. Compos Part A Appl Sci Manuf 32(9):1271–1279

    Google Scholar 

  122. Zou Y, Huda S, Yang Y (2010) Lightweight composites from long wheat straw and polypropylene web. Bioresour Technol 101(6):2026–2033

    CAS  Google Scholar 

  123. Dai D, Fan M (2014) Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. In: Hodzic A, Shanks R (Eds) Natural fibre composites. Elsevier, Amsterdam, pp 3–65

    Google Scholar 

  124. Sebe G, Cetin NS, Hill CAS, Hughes M (2000) RTM hemp fibre-reinforced polyester composites. Appl Compos Mater 7(5–6):341–349

    CAS  Google Scholar 

  125. Summerscales J, Searle TJ (2005) Low-pressure (vacuum infusion) techniques for moulding large composite structures. Proc Inst Mech Eng Part L J Mater Des Appl 219(1):45–58

    Google Scholar 

  126. Francucci G, Rodríguez ES, Vázquez A (2010) Study of saturated and unsaturated permeability in natural fiber fabrics. Compos Part A Appl Sci Manuf 41(1):16–21

    Google Scholar 

  127. Masoodi R, Pillai KM, Grahl N, Tan H (2012) Numerical simulation of LCM mold-filling during the manufacture of natural fiber composites. J Reinf Plast Compos 31(6):363–378

    CAS  Google Scholar 

  128. Goren A, Atas C (2008) Manufacturing of polymer matrix composites using vacuum assisted resin infusion molding. Arch Mater Sci Eng 34(2):117–120

    Google Scholar 

  129. Ashby MF (2012) Materials and the environment: eco-informed material choice. Elsevier, Amsterdam

    Google Scholar 

  130. Lystrup A, Løgostrup T, Knudsen H, Vestergaard T, Lilleheden L, Vestergaard J (1998) Hybrid yarn for thermoplastic fiber composites. Summary of technical results. Final report for MUP2 Framework Program, Denmark

  131. Baley C, Lan M, Davies P, Cartié D (2015) Porosity in ocean racing yacht composites: a review. Appl Compos Mater 22(1):13–28

    CAS  Google Scholar 

  132. Madsen B, Lilholt H (2003) Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Compos Sci Technol 63(9):1265–1272

    CAS  Google Scholar 

  133. Vaxman A, Narkis M, Siegmann A, Kenig S (1989) Void formation in short-fiber thermoplastic composites. Polym Compos 10(6):449–453

    CAS  Google Scholar 

  134. Bowles KJ, Frimpong S (1992) Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites. J Compos Mater 26(10):1487–1509

    CAS  Google Scholar 

  135. Dong C, Takagi H (2014) Flexural properties of cellulose nanofibre reinforced green composites. Compos Part B Eng 58:418–421

    CAS  Google Scholar 

  136. Judd NCW, Wright WW (1978) Voids and their effects on the mechanical properties of composites—an appraisal. SAMPE J 14:10–14

    CAS  Google Scholar 

  137. Ghiorse SR (1993) Effect of void content on the mechanical properties of carbon/epoxy laminates. SAMPE Q 24:54–59

    CAS  Google Scholar 

  138. Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A Appl Sci Manuf 38(6):1569–1580

    Google Scholar 

  139. Joseph S, Sreekala MS, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62(14):1857–1868

    CAS  Google Scholar 

  140. Biswas S, Kindo S, Patnaik A (2011) Effect of fiber length on mechanical behavior of coir fiber reinforced epoxy composites. Fibers Polym 12(1):73–78

    CAS  Google Scholar 

  141. Gao S-L, Mäder E (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol 66(7–8):952–963

    Google Scholar 

  142. Karmaker AC, Shneider JP (1996) Mechanical performance of short jute fibre reinforced polypropylene. J Mater Sci Lett 15(3):201–202

    CAS  Google Scholar 

  143. Shibata S, Cao Y, Fukumoto I (2005) Press forming of short natural fiber-reinforced biodegradable resin: effects of fiber volume and length on flexural properties. Polym Test 24(8):1005–1011

    CAS  Google Scholar 

  144. Sharma NK, Kumar V (2013) Studies on properties of banana fiber reinforced green composite. J Reinf Plast Compos 32(8):525–532

    Google Scholar 

  145. Liu Q, Hughes M (2008) The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Compos Part A Appl Sci Manuf 39(10):1644–1652

    Google Scholar 

  146. Zhang Y, Li Y, Ma H, Yu T (2013) Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol 88:172–177

    CAS  Google Scholar 

  147. Li Y, Chen C, Xu J, Zhang Z, Yuan B, Huang X (2015) Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites. J Mater Sci 50(3):1117–1128. https://doi.org/10.1007/s10853-014-8668-3

    Article  CAS  Google Scholar 

  148. Kafi AA, Magniez K, Fox BL (2011) Effect of manufacturing process on the flexural, fracture toughness, and thermo-mechanical properties of bio-composites. Compos Part A Appl Sci Manuf 42(8):993–999

    Google Scholar 

  149. Kinloch AJ, Taylor AC, Techapaitoon M, Teo WS, Sprenger S (2015) Tough, natural-fibre composites based upon epoxy matrices. J Mater Sci 50(21):6947–6960. https://doi.org/10.1007/s10853-015-9246-z

    Article  CAS  Google Scholar 

  150. Hsieh TH, Kinloch AJ, Masania K, Lee JS, Taylor AC, Sprenger S (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45(5):1193–1210. https://doi.org/10.1007/s10853-009-4064-9

    Article  CAS  Google Scholar 

  151. Agunsoye JO, Aigbodion VS (2013) Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Results Phys 3:187–194

    Google Scholar 

  152. Wong KJ, Zahi S, Low KO, Lim CC (2010) Fracture characterisation of short bamboo fibre reinforced polyester composites. Mater Des 31(9):4147–4154

    CAS  Google Scholar 

  153. Muralidhar BA (2013) Tensile and compressive behaviour of multilayer flax-rib knitted preform reinforced epoxy composites. Mater Des 49:400–405

    CAS  Google Scholar 

  154. Bledzki AK, Gassan J, Zhang W (1999) Impact properties of natural fiber-reinforced epoxy foams. J Cell Plast 35(6):550–562

    CAS  Google Scholar 

  155. Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos Part A Appl Sci Manuf 37(3):423–429

    Google Scholar 

  156. Dhakal HN, Zhang ZY, Richardson MOW, Errajhi OAZ (2007) The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites. Compos Struct 81(4):559–567

    Google Scholar 

  157. Jandas PJ, Mohanty S, Nayak SK (2013) Mechanical properties of surface-treated banana fiber/polylactic acid biocomposites: a comparative study of theoretical and experimental values. J Appl Polym Sci 127(5):4027–4038

    CAS  Google Scholar 

  158. Liang S, Guillaumat L, Gning P-B (2015) Impact behaviour of flax/epoxy composite plates. Int J Impact Eng 80:56–64

    Google Scholar 

  159. Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (Ed) Biodegradable polymers for industrial applications. Elsevier, Amsterdam, pp 3–31

    Google Scholar 

  160. Bowen CR, Dent AC, Stevens R, Cain M, Stewart M (2005) Determination of critical and minimum volume fraction for composite sensors and actuators. In: First international conference on multi-material micro manufacture, Cardiff, UK, 2005. Elsevier, pp 1–4

  161. Facca AG, Kortschot MT, Yan N (2007) Predicting the tensile strength of natural fibre reinforced thermoplastics. Compos Sci Technol 67(11–12):2454–2466

    CAS  Google Scholar 

  162. Ma X, Yu J, Kennedy JF (2005) Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr Polym 62(1):19–24

    CAS  Google Scholar 

  163. Węcławski BT, Fan M, Hui D (2014) Compressive behaviour of natural fibre composite. Compos Part B Eng 67:183–191

    Google Scholar 

  164. Afroughsabet V, Ozbakkaloglu T (2015) Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr Build Mater 94:73–82

    Google Scholar 

  165. Ismail MA (2007) Compressive and tensile strength of natural fibre-reinforced cement base composites. AL Rafdain Eng J 15(2):42–51

    Google Scholar 

  166. Gozde Ozerkan N, Ahsan B, Mansour S, Iyengar SR (2013) Mechanical performance and durability of treated palm fiber reinforced mortars. Int J Sustain Built Environ 2(2):131–142

    Google Scholar 

  167. Ragoubi M, Bienaimé D, Molina S, George B, Merlin A (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind Crops Prod 31(2):344–349

    CAS  Google Scholar 

  168. Pizzi A, Kueny R, Lecoanet F, Massetau B, Carpentier D, Krebs A, Loiseau F, Molina S, Ragoubi M (2009) High resin content natural matrix–natural fibre biocomposites. Ind Crops Prod 30(2):235–240

    CAS  Google Scholar 

  169. Ragoubi M, George B, Molina S, Bienaimé D, Merlin A, Hiver JM, Dahoun A (2012) Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos Part A Appl Sci Manuf 43(4):675–685

    CAS  Google Scholar 

  170. Seki Y, Sever K, Sarikanat M, Güleç HA, Tavman IH (2009) The influence of oxygen plasma treatment of jute fibers on mechanical properties of jute fiber reinforced thermoplastic composites. In: 5th international advanced technologies symposium (IATS’09), Karabuk, Turkey 2009. pp 1–4

  171. Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43(17):1791–1802

    CAS  Google Scholar 

  172. Seki Y, Sarikanat M, Sever K, Erden S, Gulec HA (2010) Effect of the low and radio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite. Fibers Polym 11(8):1159–1164

    CAS  Google Scholar 

  173. Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS (2012) Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos Part B Eng 43(5):2434–2438

    CAS  Google Scholar 

  174. Prasad SV, Pavithran C, Rohatgi PK (1983) Alkali treatment of coir fibres for coir-polyester composites. J Mater Sci 18(5):1443–1454. https://doi.org/10.1007/BF01111964

    Article  CAS  Google Scholar 

  175. Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24(2):129–135

    CAS  Google Scholar 

  176. Onal L, Karaduman Y (2009) Mechanical characterization of carpet waste natural fiber-reinforced polymer composites. J Compos Mater 43(16):1751–1768

    CAS  Google Scholar 

  177. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15(2–3):169–191

    CAS  Google Scholar 

  178. Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71(3):458–467

    CAS  Google Scholar 

  179. Bledzki AK, Fink HP, Specht K (2004) Unidirectional hemp and flax EP-and PP-composites: influence of defined fiber treatments. J Appl Polym Sci 93(5):2150–2156

    CAS  Google Scholar 

  180. Venkateshwaran N, Perumal AE, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159

    CAS  Google Scholar 

  181. Xu Y, Kawata S, Hosoi K, Kawai T, Kuroda S (2009) Thermomechanical properties of the silanized-kenaf/polystyrene composites. Express Polym Lett 3(10):657–664

    CAS  Google Scholar 

  182. Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites. Compos Sci Technol 63(9):1231–1240

    CAS  Google Scholar 

  183. Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63(9):1247–1254

    CAS  Google Scholar 

  184. Abdul Khalil HPS, Ismail H (2000) Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polym Test 20(1):65–75

    Google Scholar 

  185. Ismail H, Khalil HPSA (2000) The effects of partial replacement of oil palm wood flour by silica and silane coupling agent on properties of natural rubber compounds. Polym Test 20(1):33–41

    Google Scholar 

  186. Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A Appl Sci Manuf 39(10):1632–1637

    Google Scholar 

  187. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM, Wan Z (2014) Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites. Sci World J 2014:1–8

    Google Scholar 

  188. Joseph S, Koshy P, Thomas S (2005) The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Compos Interfaces 12(6):581–600

    CAS  Google Scholar 

  189. Hill CAS, Abdul Khalil HPS (2000) Effect of fiber treatments on mechanical properties of coir or oil palm fiber reinforced polyester composites. J Appl Polym Sci 78(9):1685–1697

    CAS  Google Scholar 

  190. Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A Appl Sci Manuf 33(8):1083–1093

    Google Scholar 

  191. Luz SM, Del Tio J, Rocha GJM, Gonçalves AR, Del’Arco AP Jr (2008) Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos Part A Appl Sci Manuf 39(9):1362–1369

    Google Scholar 

  192. Manikandan Nair KC, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61(16):2519–2529

    CAS  Google Scholar 

  193. Sapieha S, Allard P, Zang YH (1990) Dicumyl peroxide-modified cellulose/LLDPE composites. J Appl Polym Sci 41(9–10):2039–2048

    CAS  Google Scholar 

  194. Abdul Razak N, Ibrahim N, Zainuddin N, Rayung M, Saad W (2014) The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly (lactic acid) composites. Molecules 19(3):2957–2968

    Google Scholar 

  195. Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S (2007) Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 77(1):45–55

    Google Scholar 

  196. Li X, Zhang J, He J, Jeevan Prasad Reddy D, Varada Rajulu A (2010) Tensile properties of hildegardia fibers reinforced polypropylene biocomposites. J Compos Mater 44(14):1681–1687

    CAS  Google Scholar 

  197. Keener TJ, Stuart RK, Brown TK (2004) Maleated coupling agents for natural fibre composites. Compos Part A Appl Sci Manuf 35(3):357–362

    Google Scholar 

  198. Liu H, Wu Q, Zhang Q (2009) Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. Bioresour Technol 100(23):6088–6097

    CAS  Google Scholar 

  199. Gassan J, Bledzki AK (2000) Possibilities to improve the properties of natural fiber reinforced plastics by fiber modification–Jute polypropylene composites–. Appl Compos Mater 7(5–6):373–385

    CAS  Google Scholar 

  200. Wielage B, Lampke T, Utschick H, Soergel F (2003) Processing of natural-fibre reinforced polymers and the resulting dynamic—mechanical properties. J Mater Process Technol 139(1–3):140–146

    CAS  Google Scholar 

  201. Misra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2002) The influence of chemical surface modification on the performance of sisal-polyester biocomposites. Polym Compos 23(2):164–170

    Google Scholar 

  202. Sreekala MS, Kumaran MG, Thomas S (2002) Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Compos Part A Appl Sci Manuf 33(6):763–777

    Google Scholar 

  203. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37(23):5139–5149

    CAS  Google Scholar 

  204. Paul SA, Boudenne A, Ibos L, Candau Y, Joseph K, Thomas S (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos Part A Appl Sci Manuf 39(9):1582–1588

    Google Scholar 

  205. Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninckx G, Thomas S (2004) Effect of fibre length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites. Polym Int 53(11):1624–1638

    CAS  Google Scholar 

  206. Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Test 24(6):694–698

    CAS  Google Scholar 

  207. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234

    CAS  Google Scholar 

  208. Guan J, Hanna MA (2006) Selected morphological and functional properties of extruded acetylated starch–cellulose foams. Bioresour Technol 97(14):1716–1726

    CAS  Google Scholar 

  209. Joonobi M, Harun J, Tahir PM, Zaini LH, SaifulAzry S, Makinejad MD (2010) Characteristic of nanofibers extracted from kenaf core. BioResources 5(4):2556–2566

    Google Scholar 

  210. Barone JR (2005) Polyethylene/keratin fiber composites with varying polyethylene crystallinity. Compos Part A Appl Sci Manuf 36(11):1518–1524

    Google Scholar 

  211. Zafeiropoulos NE, Baillie CA, Matthews FL (2001) An investigation of the effect of processing conditions on the interface of flax/polypropylene composites. Adv Compos Lett 10(6):293–297

    Google Scholar 

  212. Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69(7–8):1187–1192

    CAS  Google Scholar 

  213. Quan H, Li Z-M, Yang M-B, Huang R (2005) On transcrystallinity in semi-crystalline polymer composites. Compos Sci Technol 65(7–8):999–1021

    CAS  Google Scholar 

  214. Zafeiropoulos NE, Baillie CA, Matthews FL (2001) A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos Part A Appl Sci Manuf 32(3–4):525–543

    Google Scholar 

  215. Zafeiropoulos NE, Baillie CA, Matthews FL (2001) The effect of transcrystallinity on the interface of green flax/polypropylene composite materials. Adv Compos Lett 10(5):229–236

    Google Scholar 

  216. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf 42(9):1189–1196

    Google Scholar 

  217. Xiong X, Shen SZ, Hua L, Liu JZ, Li X, Wan X, Miao M (2018) Finite element models of natural fibers and their composites: a review. J Reinf Plast Compos 37(9):617–635

    CAS  Google Scholar 

  218. Ilczyszyn F, Cherouat A, Montay G Effect of hemp fibre morphology on the mechanical properties of vegetal fibre composite material. In, 2014 2014. Trans Tech Publ, pp 485-489

  219. Virk AS, Hall W, Summerscales J (2012) Modulus and strength prediction for natural fibre composites. Mater Sci Technol 28(7):864–871

    CAS  Google Scholar 

  220. Kalaprasad G, Joseph K, Thomas S, Pavithran C (1997) Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J Mater Sci 32(16):4261–4267. https://doi.org/10.1023/A:1018651218515

    Article  CAS  Google Scholar 

  221. Facca AG, Kortschot MT, Yan N (2006) Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos Part A Appl Sci Manuf 37(10):1660–1671

    Google Scholar 

  222. Beckermann GW, Pickering KL (2009) Engineering and evaluation of hemp fibre reinforced polypropylene composites: micro-mechanics and strength prediction modelling. Compos Part A Appl Sci Manuf 40(2):210–217

    Google Scholar 

  223. Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Wolcott MP (2011) Application of micromechanical models to tensile properties of wood–plastic composites. Wood Sci Technol 45(3):521–532

    CAS  Google Scholar 

  224. Munde YS, Ingle RB (2015) Theoretical modeling and experimental verification of mechanical properties of natural fiber reinforced thermoplastics. Proc Technol 19:320–326

    Google Scholar 

  225. Kern WT, Kim W, Argento A, Lee EC, Mielewski DF (2016) Finite element analysis and microscopy of natural fiber composites containing microcellular voids. Mater Des 106:285–294

    Google Scholar 

  226. Modniks J, Andersons J (2010) Modeling elastic properties of short flax fiber-reinforced composites by orientation averaging. Comput Mater Sci 50(2):595–599

    CAS  Google Scholar 

  227. Modniks J, Andersons J (2013) Modeling the non-linear deformation of a short-flax-fiber-reinforced polymer composite by orientation averaging. Compos Part B Eng 54:188–193

    CAS  Google Scholar 

  228. Sliseris J, Yan L, Kasal B (2016) Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites. Compos Part B Eng 89:143–154

    CAS  Google Scholar 

  229. Stamboulis A, Baillie CA, Garkhail SK, Van Melick HGH, Peijs T (2000) Environmental durability of flax fibres and their composites based on polypropylene matrix. Appl Compos Mater 7(5–6):273–294

    CAS  Google Scholar 

  230. Apolinario G, Ienny P, Corn S, Léger R, Bergeret A, Haudin J-M (2016) Effects of water ageing on the mechanical properties of flax and glass fibre composites: degradation and reversibility. In: Natural fibres: advances in science and technology towards industrial applications. Springer, Berlin, pp 183–196

    Google Scholar 

  231. Assarar M, Scida D, El Mahi A, Poilâne C, Ayad R (2011) Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax–fibres and glass–fibres. Mater Des 32(2):788–795

    CAS  Google Scholar 

  232. Lu MM, Van Vuure AW (2019) Improving moisture durability of flax fibre composites by using non-dry fibres. Compos Part A Appl Sci Manuf 123:301–309

    CAS  Google Scholar 

  233. Yousif BF, El-Tayeb NSM (2007) The effect of oil palm fibers as reinforcement on tribological performance of polyester composite. Surf Rev Lett 14(06):1095–1102

    CAS  Google Scholar 

  234. El-Tayeb NSM (2008) A study on the potential of sugarcane fibers/polyester composite for tribological applications. Wear 265(1–2):223–235

    CAS  Google Scholar 

  235. Yousif BF (2009) Frictional and wear performance of polyester composites based on coir fibres. Proc Inst Mech Eng Part J J Eng Tribol 223(1):51–59

    CAS  Google Scholar 

  236. Chin CW, Yousif BF (2009) Potential of kenaf fibres as reinforcement for tribological applications. Wear 267(9–10):1550–1557

    CAS  Google Scholar 

  237. Abu-Sharkh BF, Hamid H (2004) Degradation study of date palm fibre/polypropylene composites in natural and artificial weathering: mechanical and thermal analysis. Polym Degrad Stab 85(3):967–973

    CAS  Google Scholar 

  238. Singh B, Gupta M (2005) Performance of pultruded jute fibre reinforced phenolic composites as building materials for door frame. J Polym Environ 13(2):127–137

    CAS  Google Scholar 

  239. Dash BN, Rana AK, Mishra HK, Nayak SK, Tripathy SS (2000) Novel low‐cost jute–polyester composites. III. Weathering and thermal behavior. J Appl Polym Sci 78(9):1671–1679

    CAS  Google Scholar 

  240. Joseph S, Oommen Z, Thomas S (2006) Environmental durability of banana-fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 100(3):2521–2531

    CAS  Google Scholar 

  241. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274

    CAS  Google Scholar 

  242. Sarani Z, Lee KP (2002) Polystyrene-benzoylated EFB reinforced composites. Polym Plast Technol Eng 41(5):951–962

    Google Scholar 

  243. Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A Appl Sci Manuf 56:280–289

    CAS  Google Scholar 

  244. Symington MC, Banks WM, West OD, Pethrick RA (2009) Tensile testing of cellulose based natural fibers for structural composite applications. J Compos Mater 43(9):1083–1108

    CAS  Google Scholar 

  245. Raghavan J, Meshii M (1997) Creep rupture of polymer composites. Compos Sci Technol 57(4):375–388

    CAS  Google Scholar 

  246. Alvarez VA, Kenny JM, Vázquez A (2004) Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends. Polym Compos 25(3):280–288

    CAS  Google Scholar 

  247. Acha BA, Reboredo MM, Marcovich NE (2007) Creep and dynamic mechanical behavior of PP–jute composites: effect of the interfacial adhesion. Compos Part A Appl Sci Manuf 38(6):1507–1516

    Google Scholar 

  248. Xu Y, Wu Q, Lei Y, Yao F (2010) Creep behavior of bagasse fiber reinforced polymer composites. Bioresour Technol 101(9):3280–3286

    CAS  Google Scholar 

  249. Amiri A, Hosseini N, Ulven CA (2015) Long-term creep behavior of flax/vinyl ester composites using time-temperature superposition principle. J Renew Mater 3(3):224–233

    CAS  Google Scholar 

  250. Yang T-C, Wu T-L, Hung K-C, Chen Y-L, Wu J-H (2015) Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly (lactic acid) composites using the time–temperature superposition principle. Constr Build Mater 93:558–563

    Google Scholar 

  251. Militký J, Jabbar A (2015) Comparative evaluation of fiber treatments on the creep behavior of jute/green epoxy composites. Compos Part B Eng 80:361–368

    Google Scholar 

  252. Annicchiarico D, Alcock JR (2014) Review of factors that affect shrinkage of molded part in injection molding. Mater Manuf Process 29(6):662–682

    CAS  Google Scholar 

  253. Hakimian E, Sulong AB (2012) Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method. Mater Des 42:62–71

    CAS  Google Scholar 

  254. Nian S-C, Wu C-Y, Huang M-S (2015) Warpage control of thin-walled injection molding using local mold temperatures. Int Commun Heat Mass Transf 61:102–110

    Google Scholar 

  255. Santos JD, Fajardo JI, Cuji AR, García JA, Garzón LE, López LM (2015) Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers. Front Mech Eng 10(3):287–293

    Google Scholar 

  256. Tan H-S, Yu Y-Z, Xing L-X, Zhao L-Y, Sun H-q (2013) Density and shrinkage of injection molded impact polypropylene copolymer/coir fiber composites. Polym Plast Technol Eng 52(3):257–260

    CAS  Google Scholar 

  257. Kozłowski R, Władyka-Przybylak M (2008) Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 19(6):446–453

    Google Scholar 

  258. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    CAS  Google Scholar 

  259. Joseph PV (2001) Studies on short sisal fibre reinforced isotactic polypropylene composites. Ph.D. Thesis, Mahatma Gandhi University, India

  260. Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34(9):982–1021

    CAS  Google Scholar 

  261. Wielage B, Lampke T, Marx G, Nestler K, Starke D (1999) Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337(1–2):169–177

    CAS  Google Scholar 

  262. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93(1):90–98

    CAS  Google Scholar 

  263. Grand AF, Wilkie CA (2000) Fire retardancy of polymeric materials. CRC Press, New York

    Google Scholar 

  264. Pujari S, Ramakrishna A, Padal KTB (2017) Investigations on thermal conductivities of jute and banana fiber reinforced epoxy composites. J Inst Eng (India) Ser D 98(1):79–83

    CAS  Google Scholar 

  265. Li X, Tabil LG, Oguocha IN, Panigrahi S (2008) Thermal diffusivity, thermal conductivity, and specific heat of flax fiber—HDPE biocomposites at processing temperatures. Compos Sci Technol 68(7–8):1753–1758

    CAS  Google Scholar 

  266. Mangal R, Saxena NS, Sreekala MS, Thomas S, Singh K (2003) Thermal properties of pineapple leaf fiber reinforced composites. Mater Sci Eng, A 339(1–2):281–285

    Google Scholar 

  267. Osugi R, Takagi H, Liu K, Gennai Y (2009) Thermal conductivity behavior of natural fiber-reinforced composites. In: Proceedings of the Asian pacific conference for materials and mechanics, Yokohama, Japan, November 13–16 2009, pp 1–3

  268. Mounika M, Ramaniah K, Prasad AVR, Rao KM, Reddy KHC (2012) Thermal conductivity characterization of bamboo fiber reinforced polyester composite. J Mater Environ Sci 3(6):1109–1116

    CAS  Google Scholar 

  269. Ramanaiah K, Prasad AVR, Chandra Reddy KH (2013) Mechanical and thermo-physical properties of fish tail palm tree natural fiber—reinforced polyester composites. Int J Polym Anal Charact 18(2):126–136

    CAS  Google Scholar 

  270. Agrawal R, Saxena NS, Sreekala MS, Thomas S (2000) Effect of treatment on the thermal conductivity and thermal diffusivity of oil-palm-fiber-reinforced phenolformaldehyde composites. J Polym Sci, Part B: Polym Phys 38(7):916–921

    CAS  Google Scholar 

  271. Feng D, Caulfield DF, Sanadi AR (2001) Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polym Compos 22(4):506–517

    CAS  Google Scholar 

  272. Mofokeng JP, Luyt AS, Tábi T, Kovács J (2012) Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J Thermoplast Compos Mater 25(8):927–948

    CAS  Google Scholar 

  273. Azwa ZN, Yousif BF (2013) Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym Degrad Stab 98(12):2752–2759

    CAS  Google Scholar 

  274. Costa C, Fonseca AC, Serra AC, Coelho JFJ (2016) Dynamic mechanical thermal analysis of polymer composites reinforced with natural fibers. Polym Rev 56(2):362–383

    CAS  Google Scholar 

  275. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63(2):283–293

    CAS  Google Scholar 

  276. Idicula M, Malhotra SK, Joseph K, Thomas S (2005) Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos Sci Technol 65(7–8):1077–1087

    CAS  Google Scholar 

  277. Pan P, Zhu B, Kai W, Serizawa S, Iji M, Inoue Y (2007) Crystallization behavior and mechanical properties of bio-based green composites based on poly (l-lactide) and kenaf fiber. J Appl Polym Sci 105(3):1511–1520

    CAS  Google Scholar 

  278. Mylsamy K, Rajendran I (2011) The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Mater Des 32(5):3076–3084

    CAS  Google Scholar 

  279. Hebel DE, Javadian A, Heisel F, Schlesier K, Griebel D, Wielopolski M (2014) Process-controlled optimization of the tensile strength of bamboo fiber composites for structural applications. Compos Part B Eng 67:125–131

    CAS  Google Scholar 

  280. Lee JM, Heitmann JA, Pawlak JJ (2007) Local morphological and dimensional changes of enzyme-degraded cellulose materials measured by atomic force microscopy. Cellulose 14(6):643–653

    CAS  Google Scholar 

  281. George M, Mussone PG, Abboud Z, Bressler DC (2014) Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy. Appl Surf Sci 314:1019–1025

    CAS  Google Scholar 

  282. Keshk S, Suwinarti W, Sameshima K (2006) Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydr Polym 65(2):202–206

    CAS  Google Scholar 

  283. Bilba K, Arsene M-A, Ouensanga A (2007) Study of banana and coconut fibers: botanical composition, thermal degradation and textural observations. Bioresour Technol 98(1):58–68

    CAS  Google Scholar 

  284. Spinacé MAS, Lambert CS, Fermoselli KKG, De Paoli M-A (2009) Characterization of lignocellulosic curaua fibres. Carbohydr Polym 77(1):47–53

    Google Scholar 

  285. Saha P, Manna S, Chowdhury SR, Sen R, Roy D, Adhikari B (2010) Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour Technol 101(9):3182–3187

    CAS  Google Scholar 

  286. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos Part A Appl Sci Manuf 42(8):888–895

    Google Scholar 

  287. De Rosa IM, Kenny JM, Maniruzzaman M, Moniruzzaman M, Monti M, Puglia D, Santulli C, Sarasini F (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71(2):246–254

    Google Scholar 

  288. Fiore V, Valenza A, Di Bella G (2011) Artichoke (Cynaracardunculus L.) fibres as potential reinforcement of composite structures. Compos Sci Technol 71(8):1138–1144

    CAS  Google Scholar 

  289. Arrakhiz FZ, El Achaby M, Kakou AC, Vaudreuil S, Benmoussa K, Bouhfid R, Fassi-Fehri O, Qaiss A (2012) Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: impact of chemical treatments. Mater Des 37:379–383

    CAS  Google Scholar 

  290. Reddy KO, Maheswari CU, Shukla M, Song JI, Rajulu AV (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos Part B Eng 44(1):433–438

    Google Scholar 

  291. Neto ARS, Araujo MAM, Souza FVD, Mattoso LHC, Marconcini JM (2013) Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Ind Crops Prod 43:529–537

    Google Scholar 

  292. AlMaadeed MA, Kahraman R, Khanam PN, Al-Maadeed S (2013) Characterization of untreated and treated male and female date palm leaves. Mater Des 43:526–531

    CAS  Google Scholar 

  293. Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC (2003) Self-reinforced melt processable composites of sisal. Compos Sci Technol 63(2):177–186

    CAS  Google Scholar 

  294. Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M, Venkateshwaren N (2015) Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: effect of woven fabric and random orientation. Mater Des 1980–2015(66):246–257

    Google Scholar 

  295. Faruk Hossen M, Hamdan S, Rahman MR, Islam MS, Liew FK, hui Lai JC, Rahman MM (2016) Effect of clay content on the morphological, thermo-mechanical and chemical resistance properties of propionic anhydride treated jute fiber/polyethylene/nanoclay nanocomposites. Measurement 90:404–411

    Google Scholar 

  296. Saba N, Tahir P, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8):2247–2273

    Google Scholar 

  297. Denault J, Labrecque B (2004) Technology group on polymer nanocomposites–PNC-Tech. Industrial Materials Institute. National Research Council Canada, vol 75. Québec, Canada

  298. Huang X, Netravali A (2007) Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos Sci Technol 67(10):2005–2014

    CAS  Google Scholar 

  299. Sen A, Kumar S (2010) Coir-fiber-based fire retardant nano filler for epoxy composites. J Therm Anal Calorim 101(1):265–271

    CAS  Google Scholar 

  300. Alamri H, Low IM (2013) Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites. Compos Part A Appl Sci Manuf 44:23–31

    CAS  Google Scholar 

  301. Lim KH, Majid MSA, Ridzuan MJM, Basaruddin KS, Afendi M (2017) Effect of nano-clay fillers on mechanical and morphological properties of Napier/epoxy Composites. In: International conference on applications and design in mechanical engineering (ICADME 2017), Shenzhen, China, 2017. IOP Publishing, pp 1–9

  302. Ashik KP, Sharma RS, Raghavendra N (2017) Effect of filler on mechanical properties of natural fiber reinforced composites. Asian J Chem 29(8):1697–1701

    CAS  Google Scholar 

  303. Afroughsabet V, Biolzi L, Ozbakkaloglu T (2016) High-performance fiber-reinforced concrete: a review. J Mater Sci 51(14):6517–6551. https://doi.org/10.1023/A:1018651218515

    Article  CAS  Google Scholar 

  304. Zimniewska M, Wladyka-Przybylak M (2016) Natural fibers for composite applications. In: Fibrous and textile materials for composite applications. Springer, Berlin, pp 171–204

    Google Scholar 

  305. Dweib MA, Hu B, Shenton Iii HW, Wool RP (2006) Bio-based composite roof structure: manufacturing and processing issues. Compos Struct 74(4):379–388

    Google Scholar 

  306. Ticoalu A, Aravinthan T, Cardona F (2010) A review of current development in natural fiber composites for structural and infrastructure applications. In: 2010. Engineers Australia, pp 113–117

  307. Khondker OA, Ishiaku US, Nakai A, Hamada H (2005) Fabrication mechanical properties of unidirectional jute/PP composites using jute yarns by film stacking method. J Polym Environ 13(2):115–126

    CAS  Google Scholar 

  308. Yousif BF, Ku H (2012) Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Mater Des 1980–2015(36):847–853

    Google Scholar 

  309. Bilisik K, Karaduman NS, Bilisik NE (2016) Fiber architectures for composite applications. In: Fibrous and textile materials for composite applications. Springer, Berlin, pp 75–134

    Google Scholar 

  310. MarketsandMarkets (2017) Biocomposites market by fiber (wood fiber and non-wood fiber), polymer (synthetic and natural), product (hybrid and green), end-use industry (transportation, building & construction and consumer goods), and region—global forecast to 2022, US

  311. GrandViewResearch (2018) Biocomposites market size, share & trends analysis report by fiber type (wood, non-wood), by polymer type (natural, synthetic), by product type (green, hybrid), by end use, and segment forecasts, 2018–2025, US

  312. Yang Y, Boom R, Irion B, van Heerden D-J, Kuiper P, de Wit H (2012) Recycling of composite materials. Chem Eng Process Process Intensif 51:53–68

    CAS  Google Scholar 

  313. TransparencyMarketResearch (2018) Global biocomposites market to benefit from increased demand in construction and automotive industry, to exhibit 9.46% CAGR by 2025 New York, US

  314. Wötzel K, Wirth R, Flake M (1999) Life cycle studies on hemp fibre reinforced components and ABS for automotive parts. Die Angewandte Makromolekulare Chemie 272(1):121–127

    Google Scholar 

  315. Müssig J, Schmehl M, Von Buttlar HB, Schönfeld U, Arndt K (2006) Exterior components based on renewable resources produced with SMC technology—considering a bus component as example. Ind Crops Prod 24(2):132–145

    Google Scholar 

  316. Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry–a sustainability assessment. J Clean Prod 15(11–12):1032–1040

    Google Scholar 

  317. Schmehl M, Müssig J, Schönfeld U, Von Buttlar HB (2008) Life cycle assessment on a bus body component based on hemp fiber and PTP®. J Polym Environ 16(1):51–60

    CAS  Google Scholar 

  318. Luz SM, Caldeira-Pires A, Ferrão PMC (2010) Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: ecodesign and LCA as strategy for automotive components. Resour Conserv Recycl 54(12):1135–1144

    Google Scholar 

  319. Wang J, Shi SQ, Liang K (2013) Comparative life-cycle assessment of sheet molding compound reinforced by natural fiber vs. glass fiber. J Agric Sci Technol B 3:493–502

    CAS  Google Scholar 

  320. La Rosa AD, Cozzo G, Latteri A, Recca A, Björklund A, Parrinello E, Cicala G (2013) Life cycle assessment of a novel hybrid glass-hemp/thermoset composite. J Clean Prod 44:69–76

    Google Scholar 

  321. Dissanayake NPJ, Summerscales J, Grove SM, Singh MM (2009) Life cycle impact assessment of flax fibre for the reinforcement of composites. J Biobased Mater Bioenergy 3(3):245–248

    CAS  Google Scholar 

  322. Dissanayake NPJ, Summerscales J, Grove SM, Singh MM (2009) Energy use in the production of flax fiber for the reinforcement of composites. J Nat Fibers 6(4):331–346

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Togay Ozbakkaloglu.

Ethics declarations

Conflict of interest

Both authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholampour, A., Ozbakkaloglu, T. A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55, 829–892 (2020). https://doi.org/10.1007/s10853-019-03990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03990-y

Navigation