Skip to main content

Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries


In this work, the microwave-assisted synthesis of manganese metal–organic framework (MOF) material is presented. Synthesis procedure is based on a microwave-assisted solvothermal reaction of manganese(III) acetylacetonate with biphenyl-4,4′-dicarboxylic acid (Bpdc) in N,N′-dimethylformamide at the temperature of 160 °C. The obtained Mn-based metal–organic framework, labeled as Mn-Bpdc, was used as a precursor for the preparation of a porous MnO/carbon nanocomposite, which was obtained via thermal transformation in a nitrogen atmosphere at 700 °C. It was found that this approach provides an effective and simple preparation pathway for porous carbon decorated with homogeneously embedded manganese(II) oxide nanoparticles. Both Mn-Bpdc and MnO/C nanocomposite materials were characterized by a variety of physicochemical methods. The prepared MnO/C nanocomposite material was deposited on a cathode surface of lithium-sulfur batteries and utilized as a shuttle suppressing layer. This electrode structure immobilizes polysulfides inside the cathode and improves the stability during cycling. The electrode with MnO/C nanocomposite shuttle suppressing layer maintains high stability during cycling in comparison with a standard electrode. The electrode with MnO/C composite layer exhibits 84.8% capacity retention after 50 cycles at different C-rates compared to 76.2% obtained for the standard electrode.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12


  1. 1

    Manthiram A, Fu Y, Chung SH et al (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787.

    Article  Google Scholar 

  2. 2

    Li T, Bai X, Gulzar U et al (2019) A comprehensive understanding of lithium–sulfur battery technology. Adv Funct Mater.

    Google Scholar 

  3. 3

    Nitta N, Wu F, Lee JT, Yushin G (2015) Li–ion battery materials: present and future. Mater Today 18:252–264.

    Article  Google Scholar 

  4. 4

    Kim J, Lee D-J, Jung H-G et al (2013) An advanced lithium–sulfur battery. Adv Funct Mater 23:1076–1080.

    Article  Google Scholar 

  5. 5

    Wang Y, Huang X, Zhang S, Hou Y (2018) Sulfur hosts against the shuttle effect. Small Methods 2:1700345.

    Article  Google Scholar 

  6. 6

    Liu Z, Liu B, Guo P et al (2018) Enhanced electrochemical kinetics in lithium–sulfur batteries by using carbon nanofibers/manganese dioxide composite as a bifunctional coating on sulfur cathode. Electrochim Acta 269:180–187.

    Article  Google Scholar 

  7. 7

    Fan X, Sun W, Meng F et al (2018) Advanced chemical strategies for lithium–sulfur batteries: a review. Green Energy Environ 3:2–19.

    Article  Google Scholar 

  8. 8

    Juhl AC, Schneider A, Ufer B et al (2016) Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance. Beilstein J Nanotechnol 7:1229–1240.

    Article  Google Scholar 

  9. 9

    Liu Q, Zhu J, Zhang L, Qiu Y (2018) Recent advances in energy materials by electrospinning. Renew Sustain Energy Rev 81:1825–1858.

    Article  Google Scholar 

  10. 10

    Wu F, Zhao S, Chen L et al (2018) Metal–organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of Lithium sulfur batteries. Energy Storage Mater 14:383–391.

    Article  Google Scholar 

  11. 11

    Hu N, Lv X, Dai Y et al (2018) SnO2/reduced graphene oxide interlayer mitigating the shuttle effect of Li–S batteries. ACS Appl Mater Interfaces 10:18665–18674.

    Article  Google Scholar 

  12. 12

    Tan L, Li X, Wang Z et al (2018) Lightweight reduced graphene Oxide@MoS 2 interlayer as polysulfide barrier for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 10:3707–3713.

    Article  Google Scholar 

  13. 13

    Lin Y, Pitcheri R, Zhu J et al (2019) Electrospun PVDF/PSSLi ionomer films as a functional separator for lithium-sulfur batteries. J Alloys Compd 785:627–633.

    Article  Google Scholar 

  14. 14

    Yao H, Yan K, Li W et al (2014) Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ Sci 7:3381–3390.

    Article  Google Scholar 

  15. 15

    Kwok CY, Pang Q, Worku AF et al (2019) Impact of the mechanical properties of a functionalized cross-linked binder on the longevity of Li–S batteries. ACS Appl Mater Interfaces 11:22481–22491.

    Article  Google Scholar 

  16. 16

    Kim PJ, Fontecha HD, Kim K, Pol VG (2018) Toward high-performance lithium–sulfur batteries: upcycling of LDPE plastic into sulfonated carbon scaffold via microwave-promoted sulfonation. ACS Appl Mater Interfaces 10:14827–14834.

    Article  Google Scholar 

  17. 17

    Liu X, Huang J-Q, Zhang Q, Mai L (2017) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29:1601759.

    Article  Google Scholar 

  18. 18

    Liu Y, Han D, Wang L et al (2019) NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium–sulfur battery. Adv Energy Mater 9:1803477.

    Article  Google Scholar 

  19. 19

    Liu X-F, Guo X-Q, Wang R et al (2019) Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium–sulfur batteries. J Mater Chem A 7:2838–2844.

    Article  Google Scholar 

  20. 20

    Zheng Y, Zheng S, Xue H, Pang H (2019) Metal–organic frameworks for lithium–sulfur batteries. J Mater Chem A 7:3469–3491.

    Article  Google Scholar 

  21. 21

    Wu DS, Shi F, Zhou G et al (2018) Quantitative investigation of polysulfide adsorption capability of candidate materials for Li–S batteries. Energy Storage Mater 13:241–246.

    Article  Google Scholar 

  22. 22

    Hart CJ, Cuisinier M, Liang X et al (2015) Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss. Chem Commun 51:2308–2311.

    Article  Google Scholar 

  23. 23

    Liang X, Hart C, Pang Q et al (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6:1–8.

    Google Scholar 

  24. 24

    Liu Y, Feng G, Guo X et al (2018) Employing MnO as multifunctional polysulfide reservoirs for enhanced-performance Li–S batteries. J Alloys Compd 748:100–110.

    Article  Google Scholar 

  25. 25

    Pang Q, Liang X, Kwok CY, Nazar LF (2015) Review—the importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium–sulfur batteries. J Electrochem Soc 162:A2567–A2576.

    Article  Google Scholar 

  26. 26

    An T, Deng D, Lei M et al (2016) MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries. J Mater Chem A 4:12858–12864.

    Article  Google Scholar 

  27. 27

    Qian X, Jin L, Zhao D et al (2016) Ketjen black-MnO composite coated separator for high performance rechargeable lithium–sulfur battery. Electrochim Acta 192:346–356.

    Article  Google Scholar 

  28. 28

    Zhu J, Pitcheri R, Kang T et al (2018) Electrospun carbon nanofibers decorated with MnO nanoparticles as a sulfur-absorbent for lithium–sulfur batteries. Ceram Int 44:16837–16843.

    Article  Google Scholar 

  29. 29

    Lin C, Qu L, Li J et al (2019) Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res 12:205–210.

    Article  Google Scholar 

  30. 30

    Kuroda S, Tobori N, Sakuraba M, Sato Y (2003) Charge–discharge properties of a cathode prepared with ketjen black as the electro-conductive additive in lithium ion batteries. J Power Sources 119–121:924–928.

    Article  Google Scholar 

  31. 31

    Sun K, Cama CA, Huang J et al (2017) Effect of carbon and binder on high sulfur loading electrode for Li–S battery technology. Electrochim Acta 235:399–408.

    Article  Google Scholar 

  32. 32

    Hu L, Chen Q (2014) Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium–ion batteries. Nanoscale 6:1236–1257.

    Article  Google Scholar 

  33. 33

    Zheng F, Xia G, Yang Y, Chen Q (2015) MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium–ion batteries. Nanoscale 7:9637–9645.

    Article  Google Scholar 

  34. 34

    Chen LD, Zheng YQ, Zhu HL (2018) Manganese oxides derived from Mn(II)-based metal–organic framework as supercapacitor electrode materials. J Mater Sci 53:1346–1355.

    Article  Google Scholar 

  35. 35

    Wang YC, Li WB, Zhao L, Xu BQ (2016) MOF-derived binary mixed metal/metal oxide @carbon nanoporous materials and their novel supercapacitive performances. Phys Chem Chem Phys 18:17941–17948.

    Article  Google Scholar 

  36. 36

    Yang W, Li X, Li Y et al (2018) Applications of metal–organic-framework-derived carbon materials. Adv Mater 31:1804740.

    Article  Google Scholar 

  37. 37

    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341:1230444.

    Article  Google Scholar 

  38. 38

    Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14.

    Article  Google Scholar 

  39. 39

    Zhong R-Q, Zou R-Q, Du M et al (2010) Metal–organic frameworks of manganese(II) 4,4′-biphenyldicarboxylates: crystal structures, hydrogen adsorption, and magnetism properties. CrystEngComm 12:677–681.

    Article  Google Scholar 

  40. 40

    Liu J, Wöll C (2017) Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chem Soc Rev 46:5730–5770.

    Article  Google Scholar 

  41. 41

    Flage-Larsen E, Thorshaug K (2014) Linker conformation effects on the band gap in metal-organic frameworks. Inorg Chem 53:2569–2572.

    Article  Google Scholar 

  42. 42

    Lu W, Wei Z, Gu Z-Y et al (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593.

    Article  Google Scholar 

  43. 43

    Millward AR, Yaghi OM (2005) Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999.

    Article  Google Scholar 

  44. 44

    Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504.

    Article  Google Scholar 

  45. 45

    Wang L, Han Y, Feng X et al (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381.

    Article  Google Scholar 

  46. 46

    Zhu L, Liu X-Q, Jiang H-L, Sun L-B (2017) Metal–organic frameworks for heterogeneous basic catalysis. Chem Rev 117:8129–8176.

    Article  Google Scholar 

  47. 47

    Butler KT, Hendon CH, Walsh A (2014) Electronic structure modulation of metal–organic frameworks for hybrid devices. ACS Appl Mater Interfaces 6:22044–22050.

    Article  Google Scholar 

  48. 48

    Kreno LE, Leong K, Farha OK et al (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112:1105–1125.

    Article  Google Scholar 

  49. 49

    Horcajada P, Gref R, Baati T et al (2012) Metal–organic frameworks in biomedicine. Chem Rev 112:1232–1268.

    Article  Google Scholar 

  50. 50

    Kazda T, Čudek P, Vondrák J et al (2018) Lithium–sulphur batteries based on biological 3D structures. J Solid State Electrochem 22:537–546.

    Article  Google Scholar 

  51. 51

    Jacquemin M, Genet MJ, Gaigneaux EM, Debecker DP (2013) Calibration of the X-ray photoelectron spectroscopy binding energy scale for the characterization of heterogeneous catalysts: Is everything really under control? ChemPhysChem 14:3618–3626.

    Article  Google Scholar 

  52. 52

    Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714.

    Article  Google Scholar 

  53. 53

    Lowell S, Shields JE, Thomas MA, Thommes M (2004) Surface area analysis from the Langmuir and BET theories. In: Characterization of porous solids and powders: surface area, pore size and density. Springer Netherlands, pp 58–81

  54. 54

    Rouquerol J, Rouquerol F, Llewellyn P et al (2014) Adsorption by powders and porous solids principles, methodology and applications. Academic Press, Amsterdam

    Google Scholar 

  55. 55

    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380.

    Article  Google Scholar 

  56. 56

    Zhu Y-J, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555.

    Article  Google Scholar 

  57. 57

    Valenzano L, Civalleri B, Chavan S et al (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718.

    Article  Google Scholar 

  58. 58

    Visser H, Dubé CE, Armstrong WH et al (2002) FTIR spectra and normal-mode analysis of a tetranuclear manganese adamantane-like complex in two electrochemically prepared oxidation states: relevance to the oxygen-evolving complex of photosystem II. J Am Chem Soc 124:11008–11017.

    Article  Google Scholar 

  59. 59

    Sharma A, Kaur S, Mahajan CG et al (2007) Fourier transform infrared spectral study of N, N′-dimethylformamide-water-rhodamine 6G mixture. Mol Phys 105:117–123.

    Article  Google Scholar 

  60. 60

    Shastri A, Das AK, Krishnakumar S et al (2017) Spectroscopy of N, N-dimethylformamide in the VUV and IR regions: experimental and computational studies. J Chem Phys 147:224305.

    Article  Google Scholar 

  61. 61

    Amankwah RK, Pickles CA (2009) Thermodynamic, thermogravimetric and permittivity studies of hausmannite (Mn3O4) in air. J Therm Anal Calorim 98:849–853.

    Article  Google Scholar 

  62. 62

    Rosaiah P, Zhu J, Hussain OM, Qiu Y (2018) Graphenothermal reduction synthesis of MnO/RGO composite with excellent anodic behaviour in lithium ion batteries. Ceram Int 44:3077–3084.

    Article  Google Scholar 

  63. 63

    Yang C, Gao Q, Tian W et al (2014) Superlow load of nanosized MnO on a porous carbon matrix from wood fibre with superior lithium ion storage performance. J Mater Chem A 2:19975–19982.

    Article  Google Scholar 

  64. 64

    Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730.

    Article  Google Scholar 

  65. 65

    Ilton ES, Post JE, Heaney PJ et al (2016) XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl Surf Sci 366:475–485.

    Article  Google Scholar 

  66. 66

    Pastoriza-Santos I, Liz-Marzán LM (2009) N, N-dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv Funct Mater 19:679–688.

    Article  Google Scholar 

  67. 67

    Song A, Yang W, Yang W et al (2017) Facile synthesis of cobalt nanoparticles entirely encapsulated in slim nitrogen-doped carbon nanotubes as oxygen reduction catalyst. ACS Sustain Chem Eng 5:3973–3981.

    Article  Google Scholar 

  68. 68

    Lindberg BJ, Hamrin K, Johansson G et al (1970) Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Phys Scr 1:286–298.

    Article  Google Scholar 

  69. 69

    Su Y-S, Fu Y, Manthiram A (2012) Self-weaving sulfur–carbon composite cathodes for high rate lithium–sulfur batteries. Phys Chem Chem Phys 14:14495–14499.

    Article  Google Scholar 

  70. 70

    Zhu P, Zhu J, Zang J et al (2017) A novel bi-functional double-layer rGO-PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries. J Mater Chem A 5:15096–15104.

    Article  Google Scholar 

  71. 71

    Huang X, Sun B, Li K et al (2013) Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. J Mater Chem A 1:13484–13489.

    Article  Google Scholar 

  72. 72

    Zhou G, Yin LC, Wang DW et al (2013) Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano 7:5367–5375.

    Article  Google Scholar 

  73. 73

    Chung S-H, Manthiram A (2014) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries. Adv Funct Mater 24:5299–5306.

    Article  Google Scholar 

  74. 74

    Huang JQ, Zhuang TZ, Zhang Q et al (2015) Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 9:3002–3011.

    Article  Google Scholar 

  75. 75

    Ma Z, Li Z, Hu K et al (2016) The enhancement of polysulfide absorbsion in Li–S batteries by hierarchically porous CoS2/carbon paper interlayer. J Power Sources 325:71–78.

    Article  Google Scholar 

  76. 76

    Zhang Z, Wang G, Lai Y, Li J (2016) A freestanding hollow carbon nanofiber/reduced graphene oxide interlayer for high-performance lithium–sulfur batteries. J Alloys Compd 663:501–506.

    Article  Google Scholar 

  77. 77

    Hong X-J, Tan T-X, Guo Y-K et al (2018) Confinement of polysulfides within bi-functional metal–organic frameworks for high performance lithium–sulfur batteries. Nanoscale 10:2774–2780.

    Article  Google Scholar 

Download references


This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I (LO1504) and (LO1210). This contribution was written with support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and national budget of Czech Republic, within the framework of project CPS - strengthening research capacity (Reg. Number: CZ.1.05/2.1.00/19.0409). The support by BUT-specific research program (Project No. FEKT-S-17-4595) is gratefully acknowledged. Authors thank Dr. Ondrej Cech for contributing XPS analysis of polysulfide adsorption.

Author information



Corresponding author

Correspondence to David Skoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Microwave reactor record, Powder XRD after TGA analysis in air, time resolved TGA-FTIR 3D spectrum, SEM-EDX spectrum, XPS survey scans, detailed TEM images, Survey XPS scan of MnO/C sample after Li2S6 adsorption test. (DOCX 5572 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skoda, D., Kazda, T., Munster, L. et al. Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries. J Mater Sci 54, 14102–14122 (2019).

Download citation