Skip to main content
Log in

Unveiling the structures and electronic properties of CH3NH3PbI3 interfaces with TiO2, ZnO, and SnO2: a first-principles study

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this report, we use first-principles calculations to study the methylammonium lead iodide (MAPI) perovskite interfaces with titanium dioxide (TiO2), zinc oxide (ZnO), and tin oxide (SnO2). Our study suggests that the binding energy of MAPI on SnO2 is weak compared to TiO2 and ZnO. However, we show that the strong binding to TiO2 and ZnO deprotonates CH3NH3 molecules which influences the decomposition process. Among the three interfaces studied in this report, TiO2-based interfaces showed the highest charge transfer followed by the interfaces formed on SnO2. We report a possible interfacial recombination mechanism inside MAPI/TiO2 and MAPI/SnO2 devices. Our study concludes that MAPI/SnO2 interfaces provide advantages due to their improved stability for perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  2. Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S (2018) High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun 9(1):3239. https://doi.org/10.1038/s41467-018-05760-x

    Article  Google Scholar 

  3. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156):344–347. https://doi.org/10.1126/science.1243167

    Article  Google Scholar 

  4. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Electron-hole diffusion lengths > 175 μm in solution grown CH3NH3PbI3 single crystals. Science 347(6225):967–970. https://doi.org/10.1126/science.aaa5760

    Article  Google Scholar 

  5. Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater (Deerfield Beach, Fla) 26(10):1584–1589. https://doi.org/10.1002/adma.201305172

    Article  Google Scholar 

  6. Sultana N, Demarais NJ, Shevchenko D, Derrick PJ (2018) Laser desorption/ionization mass spectrometry of perovskite solar cells: identification of interface interactions and degradation reactions. Solar RRL 2(8):1800022. https://doi.org/10.1002/solr.201800022

    Article  Google Scholar 

  7. Ke W, Fang G, Wan J, Tao H, Liu Q, Xiong L, Qin P, Wang J, Lei H, Yang G, Qin M, Zhao X, Yan Y (2015) Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat Commun 6:6700. https://doi.org/10.1038/ncomms7700

    Article  Google Scholar 

  8. Liu H, Huang Z, Wei S, Zheng L, Xiao L, Gong Q (2016) Nano-structured electron transporting materials for perovskite solar cells. Nanoscale 8(12):6209–6221. https://doi.org/10.1039/C5NR05207F

    Article  Google Scholar 

  9. Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JT-W, Wojciechowski K, Zhang W (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5(9):1511–1515. https://doi.org/10.1021/jz500113x

    Article  Google Scholar 

  10. You J, Meng L, Song T-B, Guo T-F, Michael Yang Y, Chang W-H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y (2015) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75–81. https://doi.org/10.1038/nnano.2015.230

    Article  Google Scholar 

  11. Correa Baena JP, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson TJ, Srimath Kandada AR, Zakeeruddin SM, Petrozza A, Abate A, Nazeeruddin MK, Grätzel M, Hagfeldt A (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8(10):2928–2934. https://doi.org/10.1039/C5EE02608C

    Article  Google Scholar 

  12. Liu D, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photon 8(2):133–138. https://doi.org/10.1038/nphoton.2013.342

    Article  Google Scholar 

  13. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. https://doi.org/10.1038/srep00591

    Article  Google Scholar 

  14. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319. https://doi.org/10.1038/nature12340

    Article  Google Scholar 

  15. Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin MK, Gratzel M (2014) Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun 5:3834. https://doi.org/10.1038/ncomms4834

    Article  Google Scholar 

  16. Christians JA, Fung RCM, Kamat PV (2014) An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc 136(2):758–764. https://doi.org/10.1021/ja411014k

    Article  Google Scholar 

  17. Jeng J-Y, Chen K-C, Chiang T-Y, Lin P-Y, Tsai T-D, Chang Y-C, Guo T-F, Chen P, Wen T-C, Hsu Y-J (2014) Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater 26(24):4107–4113. https://doi.org/10.1002/adma.201306217

    Article  Google Scholar 

  18. Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y (2015) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137(21):6730–6733. https://doi.org/10.1021/jacs.5b01994

    Article  Google Scholar 

  19. Shi Z, Jayatissa AH (2018) Perovskites-based solar cells: a review of recent progress. Mater Process Methods Mater 11(5):729. https://doi.org/10.3390/ma11050729

    Google Scholar 

  20. Akbari A, Hashemi J, Mosconi E, De Angelis F, Hakala M (2017) First principles modelling of perovskite solar cells based on TiO2 and Al2O3: stability and interfacial electronic structure. J Mater Chem A 5(5):2339–2345. https://doi.org/10.1039/C6TA08874K

    Article  Google Scholar 

  21. Geng W, Tong C-J, Liu J, Zhu W, Lau W-M, Liu L-M (2016) Structures and electronic properties of different CH3NH3PbI3/TiO2 interface: a first-principles study. Sci Rep 6:20131. https://doi.org/10.1038/srep20131

    Article  Google Scholar 

  22. Mosconi E, Azpiroz JM, De Angelis F (2015) Ab Initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem Mater 27(13):4885–4892. https://doi.org/10.1021/acs.chemmater.5b01991

    Article  Google Scholar 

  23. Nicolaev A, Mitran TL, Iftimie S, Nemnes GA (2016) Optimization of halide perovskite solar cells based on nanocolumnar ZnO. Sol Energy Mater Sol Cells 158:202–208. https://doi.org/10.1016/j.solmat.2015.10.023

    Article  Google Scholar 

  24. Haruyama J, Sodeyama K, Hamada I, Han L, Tateyama Y (2017) First-principles study of electron injection and defects at the TiO2/CH3NH3PbI3 interface of perovskite solar cells. J Phys Chem Lett 8(23):5840–5847. https://doi.org/10.1021/acs.jpclett.7b02622

    Article  Google Scholar 

  25. Listorti A, Juarez-Perez EJ, Frontera C, Roiati V, Garcia-Andrade L, Colella S, Rizzo A, Ortiz P, Mora-Sero I (2015) Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells. J Phys Chem Lett 6(9):1628–1637. https://doi.org/10.1021/acs.jpclett.5b00483

    Article  Google Scholar 

  26. Lee J-W, Lee T-Y, Yoo PJ, Grätzel M, Mhaisalkar S, Park N-G (2014) Rutile TiO2-based perovskite solar cells. J Mater Chem A 2(24):9251–9259. https://doi.org/10.1039/C4TA01786B

    Article  Google Scholar 

  27. Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82(2):55–120. https://doi.org/10.1016/j.progsurf.2006.12.002

    Article  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  29. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079. https://doi.org/10.1103/PhysRevB.23.5048

    Article  Google Scholar 

  30. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):566–569. https://doi.org/10.1103/PhysRevLett.45.566

    Article  Google Scholar 

  31. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  32. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  33. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  34. Thind AS, Huang X, Sun J, Mishra R (2017) First-principles prediction of a stable hexagonal phase of CH3NH3PbI3. Chem Mater 29(14):6003–6011. https://doi.org/10.1021/acs.chemmater.7b01781

    Article  Google Scholar 

  35. Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr Sect B 47(4):462–468. https://doi.org/10.1107/S010876819100335X

    Article  Google Scholar 

  36. Kayani ZN, Saleemi F, Batool I (2015) Effect of calcination temperature on the properties of ZnO nanoparticles. Appl Phys A 119(2):713–720. https://doi.org/10.1007/s00339-015-9019-1

    Article  Google Scholar 

  37. Toledo-Antonio JA, Gutiérrez-Baez R, Sebastian PJ, Vázquez A (2003) Thermal stability and structural deformation of rutile SnO2 nanoparticles. J Solid State Chem 174(2):241–248. https://doi.org/10.1016/S0022-4596(03)00181-6

    Article  Google Scholar 

  38. Mosconi E, Ronca E, De Angelis F (2014) First-principles investigation of the TiO2/organohalide perovskites interface: the role of interfacial chlorine. J Phys Chem Lett 5(15):2619–2625. https://doi.org/10.1021/jz501127k

    Article  Google Scholar 

  39. Goh ES, Mah JW, Yoon TL (2017) Effects of Hubbard term correction on the structural parameters and electronic properties of wurtzite ZnO. Comput Mater Sci 138:111–116. https://doi.org/10.1016/j.commatsci.2017.06.032

    Article  Google Scholar 

  40. Rivera R, Marcillo F, Chamba A, Puchaicela P, Stashans A (2014) Quantum chemical study of point defects in tin dioxide. In: Transactions on engineering technologies, vol 275. Springer, Dordrecht, pp 13–24

  41. Vaspwiki (March 2011). https://cms.mpi.univie.ac.at/wiki/index.php/LDAUU. Accessed 04 Feb 2019

  42. Geng W, Zhang L, Zhang Y-N, Lau W-M, Liu L-M (2014) First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J Phys Chem C 118(34):19565–19571. https://doi.org/10.1021/jp504951h

    Article  Google Scholar 

  43. Dkhissi Y, Braunger S, Chen D, Weerasinghe H, Spiccia L, Cheng Y-B, Caruso AR (2016) Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates. Chemsuschem 9:687–695. https://doi.org/10.1002/cssc.201501659

    Article  Google Scholar 

  44. Yang J, Siempelkamp BD, Mosconi E, De Angelis F, Kelly TL (2015) Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater 27(12):4229–4236. https://doi.org/10.1021/acs.chemmater.5b01598

    Article  Google Scholar 

  45. Casalegno M, Pastore R, Idé J, Po R, Raos G (2017) Origin of charge separation at organic photovoltaic heterojunctions: a mesoscale quantum mechanical view. J Phys Chem C 121(31):16693–16701. https://doi.org/10.1021/acs.jpcc.7b03640

    Article  Google Scholar 

  46. Kogo A, Sanehira Y, Numata Y, Ikegami M, Miyasaka T (2018) Amorphous metal oxide blocking layers for highly efficient low-temperature brookite TiO2-based perovskite solar cells. ACS Appl Mater Interfaces 10(3):2224–2229. https://doi.org/10.1021/acsami.7b16662

    Article  Google Scholar 

  47. Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Xing Y, Du Y, Bai X, Ma T (2015) Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C 119(19):10212–10217. https://doi.org/10.1021/acs.jpcc.5b00541

    Article  Google Scholar 

  48. Gong C, Colombo L, Wallace RM, Cho K (2014) The unusual mechanism of partial fermi level pinning at metal–MoS2 interfaces. Nano Lett 14(4):1714–1720. https://doi.org/10.1021/nl403465v

    Article  Google Scholar 

  49. Chen K, Kamran S (2013) Bonding characteristics of TiC and TiN. Model Numer Simul Mater Sci 3:1–5. https://doi.org/10.4236/mnsms.2013.31002

    Google Scholar 

  50. Lindblad R, Bi D, Park B-w, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson EMJ, Rensmo H (2014) Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J Phys Chem Lett 5(4):648–653. https://doi.org/10.1021/jz402749f

    Article  Google Scholar 

  51. Si F, Hu W, Tang F, Cheng Y, Xue H (2017) Electronic and optical properties of the wurtzite-ZnO/CH3NH3PbI3 interface: first-principles calculations. J Mater Sci 52(24):13841–13851. https://doi.org/10.1007/s10853-017-1276-2

    Article  Google Scholar 

  52. Javaid S, Myung CW, Yun J, Lee G, Kim KS (2018) Organic cation steered interfacial electron transfer within organic–inorganic perovskite solar cells. J Mater Chem A 6(10):4305–4312. https://doi.org/10.1039/C7TA09504J

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contributions of NeSI high-performance computing facilities of New Zealand to the results of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Gaston.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, N., Al Amin, A., Metin, D.Z. et al. Unveiling the structures and electronic properties of CH3NH3PbI3 interfaces with TiO2, ZnO, and SnO2: a first-principles study. J Mater Sci 54, 13594–13608 (2019). https://doi.org/10.1007/s10853-019-03867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03867-0

Navigation