Skip to main content
Log in

In- and through-plane conductivity of 8YSZ films produced at room temperature by aerosol deposition

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aerosol deposition is a unique spray coating process to deposit dense ceramic films directly at room temperature just by spraying a dry powder, without any binder or additional sintering step needed. Therefore, it is a very promising coating method for functional materials that may be used to produce a variety of electrochemical devices, solid oxide fuel cells or gas sensors. However, functional properties like the electrical conductivity significantly depend on the microstructure of the produced film. Consequently, anisotropic film properties may occur even for isotropic functional materials. In this work, films of oxide ion-conducting yttria-stabilized zirconia (YSZ) were produced by aerosol deposition. The orientation-dependent electrical conductivity was measured using two different electrode configurations: one for the in-plane conductivity and another one for through-plane measurements. A slight anisotropy was observed, attributed to the present film morphology. In particular, the grain boundaries influenced the total conductivity. Furthermore, a thermal post-deposition treatment significantly affected the total conductivity of aerosol-deposited YSZ films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Akedo J (2006) Microstructure of ceramic thick film formed by aerosol deposition and its applications to microactuator. Integr Ferroelectr 80(1):55–65. https://doi.org/10.1080/10584580600656221

    Article  CAS  Google Scholar 

  2. Choi J-J, Cho K-S, Choi J-H, Ryu J, Hahn B-D, Yoon W-H, Kim J-W, Ahn C-W, Yun J, Park D-S (2012) Low temperature preparation and characterization of LSGMC based IT-SOFC cell by aerosol deposition. J Eur Ceram Soc 32(1):115–121. https://doi.org/10.1016/j.jeurceramsoc.2011.07.036

    Article  CAS  Google Scholar 

  3. Choi J-J, Choi J-H, Ryu J, Hahn B-D, Kim J-W, Ahn C-W, Yoon W-H, Park D-S (2012) Microstructural evolution of YSZ electrolyte aerosol-deposited on porous NiO–YSZ. J Eur Ceram Soc 32(12):3249–3254. https://doi.org/10.1016/j.jeurceramsoc.2012.04.024

    Article  CAS  Google Scholar 

  4. Jung J-H, Hahn B-D, Yoon W-H, Park D-S, Choi J-J, Ryu J, Kim J-W, Ahn C-W, Song K-M (2012) Halogen plasma erosion resistance of rare earth oxide films deposited on plasma sprayed alumina coating by aerosol deposition. J Eur Ceram Soc 32(10):2451–2457. https://doi.org/10.1016/j.jeurceramsoc.2012.02.019

    Article  CAS  Google Scholar 

  5. Piechowiak MA, Henon J, Durand-Panteix O, Etchegoyen G, Coudert V, Marchet P, Rossignol F (2014) Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method. J Eur Ceram Soc 34(5):1063–1072. https://doi.org/10.1016/j.jeurceramsoc.2013.11.019

    Article  CAS  Google Scholar 

  6. Baba S, Sato H, Huang L, Uritani A, Funahashi R, Akedo J (2014) Formation and characterization of polyethylene terephthalate-based (Bi0.15Sb0.85)2Te3 thermoelectric modules with CoSb3 adhesion layer by aerosol deposition. J Alloys Compd 589:56–60. https://doi.org/10.1016/j.jallcom.2013.11.180

    Article  CAS  Google Scholar 

  7. Lee MW, Park JJ, Kim DY, Yoon SS, Kim HY, Kim DH, James SC, Chandra S, Coyle T, Ryu JH, Yoon WH, Park DS (2011) Optimization of supersonic nozzle flow for titanium dioxide thin-film coating by aerosol deposition. J Aerosol Sci 42(11):771–780. https://doi.org/10.1016/j.jaerosci.2011.07.006

    Article  CAS  Google Scholar 

  8. Park H, Kim J, Lee C (2015) Dynamic fragmentation process and fragment microstructure evolution of alumina particles in a vacuum kinetic spraying system. Scr Mater 108:72–75. https://doi.org/10.1016/j.scriptamat.2015.06.020

    Article  CAS  Google Scholar 

  9. Kim C-W, Choi J-H, Kim H-J, Lee D-W, Hyun C-Y, Nam S-M (2012) Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films. Ceram Int 38(7):5621–5627. https://doi.org/10.1016/j.ceramint.2012.04.003

    Article  CAS  Google Scholar 

  10. Imanaka Y, Hayashi N, Takenouchi M, Akedo J (2007) Aerosol deposition for post-LTCC. J Eur Ceram Soc 27(8–9):2789–2795. https://doi.org/10.1016/j.jeurceramsoc.2006.11.055

    Article  CAS  Google Scholar 

  11. Yin Z-J, Wang S-B, Fu W, Tan X-H, Tao S-Y, Ding C-X (2011) Evolution and prospect of thermal spraying technique. J Inorg Mater 26(3):225–232. https://doi.org/10.3724/SP.J.1077.2011.00225

    Article  CAS  Google Scholar 

  12. Schmidt T, Assadi H, Gärtner F, Richter H, Stoltenhoff T, Kreye H, Klassen T (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol 18(5–6):794–808. https://doi.org/10.1007/s11666-009-9357-7

    Article  Google Scholar 

  13. Akedo J (2008) Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J Therm Spray Technol 17(2):181–198. https://doi.org/10.1007/s11666-008-9163-7

    Article  CAS  Google Scholar 

  14. Exner J, Schubert M, Hanft D, Kita J, Moos R (2019) How to treat powders for the room temperature aerosol deposition method to avoid porous, low strength ceramic films. J Eur Ceram Soc 39(2–3):592–600. https://doi.org/10.1016/j.jeurceramsoc.2018.08.008

    Article  CAS  Google Scholar 

  15. Hanft D, Exner J, Schubert M, Stöcker T, Fuierer P, Moos R (2015) An overview of the aerosol deposition method: process fundamentals and new trends in materials applications. J Ceram Sci Technol 6(3):147–182. https://doi.org/10.4416/JCST2015-00018

    Article  Google Scholar 

  16. Akedo J (2000) Study on rapid micro-structuring using Jet molding—present status and structuring properties toward HARMST. Microsyst Technol 6(6):205–209. https://doi.org/10.1007/s005420000055

    Article  Google Scholar 

  17. Lebedev M, Akedo J (2002) What thickness of the piezoelectric layer with high breakdown voltage is required for the microactuator? Jpn J Appl Phys 41(Part 1, No. 5B):3344–3347. https://doi.org/10.1143/JJAP.41.3344

    Article  CAS  Google Scholar 

  18. Park J-H, Akedo J (2008) Fabrication and scanning-angle temperature dependence of metal-based, optical resonant scanners with PZT actuation. IEEE Trans Ultrason Ferroelect Freq Contr 55(5):942–945. https://doi.org/10.1109/TUFFC.2008.736

    Article  Google Scholar 

  19. Ryu J, Choi J-J, Hahn B-D, Park D-S, Yoon W-H, Kim K-H (2007) Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl Phys Lett 90(15):152901. https://doi.org/10.1063/1.2720751

    Article  CAS  Google Scholar 

  20. Sung HK, Wang C, Kim NY (2015) Ultra-smooth BaTiO3 surface morphology using chemical mechanical polishing technique for high-k metal–insulator–metal capacitors. Mater Sci Semicond Process 40:516–522. https://doi.org/10.1016/j.mssp.2015.07.016

    Article  CAS  Google Scholar 

  21. Furuta T, Hatta S, Kigoshi Y, Hoshina T, Takeda H, Tsurumi T (2011) Dielectric properties of nanograined BaTiO3 ceramics fabricated by aerosol deposition method. Key Eng Mater 485:183–186. https://doi.org/10.4028/www.scientific.net/KEM.485.183

    Article  CAS  Google Scholar 

  22. Kim H-K, Lee S-H, Kim SI, Woo Lee C, Rag Yoon J, Lee S-G, Lee Y-H (2014) Dielectric strength of voidless BaTiO3 films with nano-scale grains fabricated by aerosol deposition. J Appl Phys 115(1):14101. https://doi.org/10.1063/1.4851675

    Article  CAS  Google Scholar 

  23. Popovici D, Tsuda H, Akedo J (2009) Postdeposition annealing effect on (Ba0.6, Sr0.4)TiO3 thick films deposited by aerosol deposition method. J Appl Phys 105(6):61638. https://doi.org/10.1063/1.3086197

    Article  CAS  Google Scholar 

  24. Stöcker T, Exner J, Schubert M, Streibl M, Moos R (2016) Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO2. Materials 9(4):227. https://doi.org/10.3390/ma9040227

    Article  CAS  Google Scholar 

  25. Sinha BB, Chung KC (2013) Fabrication and properties of MgB2 coated superconducting tapes. J Supercond Novel Magn 26(5):1507–1511. https://doi.org/10.1007/s10948-012-1957-7

    Article  CAS  Google Scholar 

  26. Kauffmann-Weiss S, Hässler W, Guenther E, Scheiter J, Denneler S, Glosse P, Berthold T, Oomen M, Arndt T, Stöcker T, Hanft D, Moos R, Weiss M, Weis F, Holzapfel B (2017) Superconducting properties of thick films on hastelloy prepared by the aerosol deposition method with ex situ MgB2 powder. IEEE Trans Appl Supercond 27(4):6200904. https://doi.org/10.1109/TASC.2017.2669479

    Article  Google Scholar 

  27. Sinha BB, Chung KC, Jang SH, Park DS, Hahn B-D (2011) Fabrication of magnesium diboride thin films by aerosol deposition. Prog Supercond 13(2):122–126

    Google Scholar 

  28. Sugimoto S, Nakamura M, Maki T, Kagotani T, Inomata K, Akedo J, Hirosawa S, Shigemoto Y (2006) Nd2Fe14B/Fe3B nanocomposite film fabricated by aerosol deposition method. J Alloys Compd 408–412:1413–1416. https://doi.org/10.1016/j.jallcom.2005.04.044

    Article  CAS  Google Scholar 

  29. Sugimoto S, Maeda T, Kobayashi R, Akedo J, Lebedev M, Inomata K (2003) Magnetic properties of Sm–Fe–N thick film magnets prepared by the aerosol deposition method. IEEE Trans Magn 39(5):2986–2988. https://doi.org/10.1109/TMAG.2003.816715

    Article  CAS  Google Scholar 

  30. Maki T, Sugimoto S, Kagotani T, Inomata K, Akedo J (2004) Effect of applied magnetic field on magnetic properties of Sm–Fe–N films prepared by aerosol deposition method. Mater Trans 45(8):2626–2629

    Article  CAS  Google Scholar 

  31. Maki T, Sugimoto S, Kagotani T, Inomata K, Akedo J, Ishikawa T, Ohmori K (2006) Influence of deposition angle on the magnetic properties of Sm–Fe–N films fabricated by aerosol deposition method. J Alloys Compd 408–412:1409–1412. https://doi.org/10.1016/j.jallcom.2005.04.040

    Article  CAS  Google Scholar 

  32. Inada R, Okada T, Bando A, Tojo T, Sakurai Y (2017) Properties of garnet-type Li6La3ZrTaO12 solid electrolyte films fabricated by aerosol deposition method. Prog Nat Sci Mater Int 27(3):350–355. https://doi.org/10.1016/j.pnsc.2017.06.002

    Article  CAS  Google Scholar 

  33. Hanft D, Exner J, Moos R (2017) Thick-films of garnet-type lithium ion conductor prepared by the aerosol deposition method: the role of morphology and annealing treatment on the ionic conductivity. J Power Sources 361:61–69. https://doi.org/10.1016/j.jpowsour.2017.06.061

    Article  CAS  Google Scholar 

  34. Choi J-J, Ryu J, Hahn B-D, Yoon W-H, Lee B-K, Choi J-H, Park D-S (2010) Oxidation behavior of ferritic steel alloy coated with LSM–YSZ composite ceramics by aerosol deposition. J Alloys Compd 492(1–2):488–495. https://doi.org/10.1016/j.jallcom.2009.11.146

    Article  CAS  Google Scholar 

  35. Choi J-J, Ahn C-W, Kim J-W, Ryu J, Hahn B-D, Yoon W-H, Park D-S (2015) Anode-supported type SOFCs based on novel low temperature ceramic coating process. J Korean Ceram Soc 52(5):338–343. https://doi.org/10.4191/kcers.2015.52.5.338

    Article  CAS  Google Scholar 

  36. Exner J, Fuierer P, Moos R (2014) Aerosol deposition of (Cu, Ti) substituted bismuth vanadate films. Thin Solid Films 573:185–190. https://doi.org/10.1016/j.tsf.2014.11.037

    Article  CAS  Google Scholar 

  37. Bae H, Choi J, Choi GM (2013) Electrical conductivity of Gd-doped ceria film fabricated by aerosol deposition method. Solid State Ionics 236:16–21. https://doi.org/10.1016/j.ssi.2013.01.022

    Article  CAS  Google Scholar 

  38. Exner J, Pöpke H, Fuchs F-M, Kita J, Moos R (2018) Annealing of gadolinium-doped ceria (GDC) films produced by the aerosol deposition method. Materials 11(11):2072. https://doi.org/10.3390/ma11112072

    Article  Google Scholar 

  39. Bektas M, Hanft D, Schönauer-Kamin D, Stöcker T, Hagen G, Moos R (2014) Aerosol-deposited BaFe0.7Ta0.3O3−δ for nitrogen monoxide and temperature-independent oxygen sensing. J Sens Sens Syst 3(2):223–229. https://doi.org/10.5194/jsss-3-223-2014

    Article  Google Scholar 

  40. Sahner K, Kaspar M, Moos R (2009) Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films. Sens Actuators B 139(2):394–399. https://doi.org/10.1016/j.snb.2009.03.011

    Article  CAS  Google Scholar 

  41. Exner J, Schubert M, Hanft D, Stöcker T, Fuierer P, Moos R (2016) Tuning of the electrical conductivity of Sr(Ti, Fe)O3 oxygen sensing films by aerosol co-deposition with Al2O3. Sens Actuators B 230:427–433. https://doi.org/10.1016/j.snb.2016.02.033

    Article  CAS  Google Scholar 

  42. Wang Y-Y, Liu Y, Yang G-J, Feng J-J, Kusumoto K (2010) Effect of microstructure on the electrical properties of nano-structured TiN coatings deposited by vacuum cold spray. J Therm Spray Technol 19(6):1231–1237. https://doi.org/10.1007/s11666-010-9541-9

    Article  CAS  Google Scholar 

  43. Choi J-J, Ryu J, Hahn B-D, Yoon W-H, Lee B-K, Park D-S (2009) Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation. J Mater Sci 44(3):843–848. https://doi.org/10.1007/s10853-008-3132-x

    Article  CAS  Google Scholar 

  44. Schubert M, Münch C, Schuurman S, Poulain V, Kita J, Moos R (2018) Characterization of nickel manganite NTC thermistor films prepared by aerosol deposition at room temperature. J Eur Ceram Soc 38(2):613–619. https://doi.org/10.1016/j.jeurceramsoc.2017.09.005

    Article  CAS  Google Scholar 

  45. Ryu J, Park D-S, Schmidt R (2011) In-plane impedance spectroscopy in aerosol deposited NiMn2O4 negative temperature coefficient thermistor films. J Appl Phys 109(11):113722. https://doi.org/10.1063/1.3592300

    Article  CAS  Google Scholar 

  46. Johnson SD, Gonzalez CM, Anderson V, Robinson Z, Newman HS, Shin S, Qadri SB (2017) Magnetic and structural properties of sintered bulk pucks and aerosol deposited films of Ti-doped barium hexaferrite for microwave absorption applications. J Appl Phys 122(2):24901. https://doi.org/10.1063/1.4991808

    Article  CAS  Google Scholar 

  47. Dayaghi AM, Kim KJ, Kim SJ, Kim S, Bae H, Choi GM (2017) Thermal cycling and electrochemical characteristics of solid oxide fuel cell supported on stainless steel with a new 3-phase composite anode. J Power Sources 354:74–84. https://doi.org/10.1016/j.jpowsour.2017.04.022

    Article  CAS  Google Scholar 

  48. Choi J-J, Oh S-H, Noh H-S, Kim H-R, Son J-W, Park D-S, Choi J-H, Ryu J, Hahn B-D, Yoon W-H, Lee H-W (2011) Low temperature fabrication of nano-structured porous LSM–YSZ composite cathode film by aerosol deposition. J Alloys Compd 509(5):2627–2630. https://doi.org/10.1016/j.jallcom.2010.11.169

    Article  CAS  Google Scholar 

  49. Akedo J, Lebedev M (2002) Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Jpn J Appl Phys 41(Part 1, No. 11B):6980–6984. https://doi.org/10.1143/JJAP.41.6980

    Article  CAS  Google Scholar 

  50. Exner J, Hahn M, Schubert M, Hanft D, Fuierer P, Moos R (2015) Powder requirements for aerosol deposition of alumina films. Adv Powder Technol 26:1143–1151. https://doi.org/10.1016/j.apt.2015.05.016

    Article  CAS  Google Scholar 

  51. Schubert M, Leupold N, Exner J, Kita J, Moos R (2018) High-temperature electrical insulation behavior of alumina films prepared at room temperature by aerosol deposition and influence of the annealing process and powder impurities. J Therm Spray Technol 27(5):870–879. https://doi.org/10.1007/s11666-018-0719-x

    Article  CAS  Google Scholar 

  52. Ahamer C, Opitz AK, Rupp GM, Fleig J (2017) Revisiting the temperature dependent ionic conductivity of yttria stabilized zirconia (YSZ). J Electrochem Soc 164(7):F790–F803. https://doi.org/10.1149/2.0641707jes

    Article  CAS  Google Scholar 

  53. Exner J, Moos R (2015) Ermittlung spezifischer Materialkennwerte von Schichten mittels Interdigital-Elektroden. 12. Dresdner Sensor-Symposium, Dresden, Germany. https://doi.org/10.5162/12dss2015/p7.10

  54. Park J-J, Kim D-Y, Lee J-G, Kim D, Oh J-H, Seong T-Y, van Hest MFAM, Yoon SS (2013) Superhydrophilic transparent titania films by supersonic aerosol deposition. J Am Ceram Soc 96(5):1596–1601. https://doi.org/10.1111/jace.12164

    Article  CAS  Google Scholar 

  55. Nakada M, Tsuda H, Ohashi K, Akedo J (2007) Aerosol deposition on transparent electro-optic films for optical modulators. IEICE Trans Electron 90(1):36–40. https://doi.org/10.1093/ietele/e90-c.1.36

    Article  Google Scholar 

  56. Akedo J (2006) Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J Am Ceram Soc 89(6):1834–1839. https://doi.org/10.1111/j.1551-2916.2006.01030.x

    Article  CAS  Google Scholar 

  57. Khan A, Ahn C-W, Ryu J, Yoon W-H, Hahn B-D, Choi J-J, Kim J-W, Park D-S (2014) Effect of annealing on properties of lithium aluminum germanium phosphate electrolyte thick films prepared by aerosol deposition. Met Mater Int 20(2):399–404. https://doi.org/10.1007/s12540-014-1018-9

    Article  CAS  Google Scholar 

  58. Kochowski S, Nitsch K (2002) Description of the frequency behaviour of metal–SiO2–GaAs structure characteristics by electrical equivalent circuit with constant phase element. Thin Solid Films 415(1–2):133–137. https://doi.org/10.1016/S0040-6090(02)00506-0

    Article  CAS  Google Scholar 

  59. Jović VD, Jović BM (2003) EIS and differential capacitance measurements onto single crystal faces in different solutions: part I: Ag(111) in 0.01 M NaCl. J Electroanal Chem 541:1–11. https://doi.org/10.1016/S0022-0728(02)01309-8

    Article  Google Scholar 

  60. Boukamp BA (2008) Electrochemical impedance spectroscopy. electrocatalysis@nanoscale: techniques and applications. University Leiden, Leiden. www.lorentzcenter.nl/lc/web/2008/317/presentations/Boukamp.pdf

  61. Shu JH, Wikle HC, Chin BA (2010) Passive chemiresistor sensor based on iron (II) phthalocyanine thin films for monitoring of nitrogen dioxide. Sens Actuators B 148(2):498–503. https://doi.org/10.1016/j.snb.2010.05.017

    Article  CAS  Google Scholar 

  62. Hagen G, Kita J, Izu N, Röder-Roith U, Schönauer-Kamin D, Moos R (2013) Planar platform for temperature dependent four-wire impedance spectroscopy—a novel tool to characterize functional materials. Sens Actuators B 187:174–183. https://doi.org/10.1016/j.snb.2012.10.068

    Article  CAS  Google Scholar 

  63. Bailly N, Georges S, Djurado E (2012) Elaboration and electrical characterization of electrosprayed YSZ thin films for intermediate temperature-solid oxide fuel cells (IT-SOFC). Solid State Ionics 222–223:1–7. https://doi.org/10.1016/j.ssi.2012.06.020

    Article  CAS  Google Scholar 

  64. Nakamura A, Wagner JB (1986) Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J Electrochem Soc 133(8):1542. https://doi.org/10.1149/1.2108965

    Article  CAS  Google Scholar 

  65. Weller M, Herzog R, Kilo M, Borchardt G, Weber S, Scherrer S (2004) Oxygen mobility in yttria-doped zirconia studied by internal friction, electrical conductivity and tracer diffusion experiments. Solid State Ionics 175(1–4):409–413. https://doi.org/10.1016/j.ssi.2003.12.044

    Article  CAS  Google Scholar 

  66. Gerstl M, Navickas E, Friedbacher G, Kubel F, Ahrens M, Fleig J (2011) The separation of grain and grain boundary impedance in thin yttria stabilized zirconia (YSZ) layers. Solid State Ionics 185(1):32–41. https://doi.org/10.1016/j.ssi.2011.01.008

    Article  CAS  Google Scholar 

  67. Fleig J, Maier J (1999) The impedance of ceramics with highly resistive grain boundaries: validity and limits of the brick layer model. J Eur Ceram Soc 19(6–7):693–696. https://doi.org/10.1016/S0955-2219(98)00298-2

    Article  CAS  Google Scholar 

  68. Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121–E126. https://doi.org/10.1149/1.1348267

    Article  CAS  Google Scholar 

  69. Tuller H (2000) Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2):143–157. https://doi.org/10.1016/S0167-2738(00)00629-9

    Article  CAS  Google Scholar 

  70. Lee D-W, Kim H-J, Kim Y-H, Yun Y-H, Nam S-M (2011) Growth Process of α-Al2O3 ceramic films on metal substrates fabricated at room temperature by aerosol deposition. J Am Ceram Soc 94(9):3131–3138. https://doi.org/10.1111/j.1551-2916.2011.04493.x

    Article  CAS  Google Scholar 

  71. Teraoka K, Hirose S, Murakami S, Kato K, Akedo J (2010) Aerosol deposition of α-TCP on a Ti surface. J Ceram Soc Jpn 118(1378):502–507. https://doi.org/10.2109/jcersj2.118.502

    Article  CAS  Google Scholar 

  72. Wang L-S, Zhou H-F, Zhang K-J, Wang Y-Y, Li C-X, Luo X-T, Yang G-J, Li C-J (2016) Effect of the powder particle structure and substrate hardness during vacuum cold spraying of Al2O3. Ceram Int 43(5):4390–4398. https://doi.org/10.1016/j.ceramint.2016.12.085

    Article  CAS  Google Scholar 

  73. Ryu J, Kim K-Y, Choi J-J, Hahn B-D, Yoon W-H, Lee B-K, Park D-S, Park C (2009) Highly dense and nanograined NiMn2O4 negative temperature coefficient thermistor thick films fabricated by aerosol-deposition. J Am Ceram Soc 92(12):3084–3087. https://doi.org/10.1111/j.1551-2916.2009.03300.x

    Article  CAS  Google Scholar 

  74. Shen W, Jiang J, Hertz JL (2014) Reduced ionic conductivity in biaxially compressed ceria. RSC Adv 4(41):21625–21630. https://doi.org/10.1039/C4RA00820K

    Article  CAS  Google Scholar 

  75. Fischer S, Pohle R, Magori E, Fleischer M, Moos R (2014) Detection of NO by pulsed polarization of Pt I YSZ. Solid State Ionics 262:288–291. https://doi.org/10.1016/j.ssi.2014.01.022

    Article  CAS  Google Scholar 

  76. Exner J, Albrecht G, Schönauer-Kamin D, Kita J, Moos R (2017) Pulsed polarization-based NOx sensors of YSZ films produced by the aerosol deposition method and by screen-printing. Sensors 17(8):1715. https://doi.org/10.3390/s17081715

    Article  CAS  Google Scholar 

  77. Akedo J, Ryu J, Jeong D-Y, Johnson SD (2017) Advanced piezoelectric materials. Elsevier, London, pp 575–614

    Book  Google Scholar 

  78. Akedo J, Park J-H, Kawakami Y (2018) Piezoelectric thick film fabricated with aerosol deposition and its application to piezoelectric devices. Jpn J Appl Phys 57(07LA02):2. https://doi.org/10.7567/JJAP.57.07LA02

    Article  Google Scholar 

  79. Palneedi H, Maurya D, Kim G-Y, Annapureddy V, Noh M-S, Kang C-Y, Kim J-W, Choi J-J, Choi S-Y, Chung S-Y, Kang S-JL, Priya S, Ryu J (2017) Unleashing the full potential of magnetoelectric coupling in film heterostructures. Adv Mater 29(10):1605688. https://doi.org/10.1002/adma.201605688

    Article  CAS  Google Scholar 

  80. Palneedi H, Choi I, Kim G-Y, Annapureddy V, Maurya D, Priya S, Kim J-W, Lee KJ, Choi S-Y, Chung S-Y, Kang S-JL, Ryu J, Vieland D (2016) Tailoring the magnetoelectric properties of Pb(Zr, Ti)O3 film deposited on amorphous metglas foil by laser annealing. J Am Ceram Soc 99:2680–2687. https://doi.org/10.1111/jace.14270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the Bayerische Forschungsstiftung (BFS) in the framework of the collaborative research project ForOxiE2 is gratefully acknowledged (Grant AZ-1143-14). The authors are indebted to Mrs. Mergner and to the KeyLab Electron and Optical Microscopy of the Bavarian Polymer Institute (BPI) for SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Exner.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exner, J., Kita, J. & Moos, R. In- and through-plane conductivity of 8YSZ films produced at room temperature by aerosol deposition. J Mater Sci 54, 13619–13634 (2019). https://doi.org/10.1007/s10853-019-03844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03844-7

Navigation