Journal of Materials Science

, Volume 54, Issue 20, pp 13322–13333 | Cite as

Titanium dioxide/quaternary phosphonium salts/polyacrylonitrile composite nanofibrous membranes with high antibacterial properties and ultraviolet resistance efficiency

  • Xing Zhong
  • Rong Li
  • Zehong Wang
  • Wei Wang
  • Dan YuEmail author
Materials for life sciences


In this paper, titanium dioxide (TiO2)/quaternary phosphonium salts (QPS)/polyacrylonitrile (PAN) composite nanofibrous membranes were prepared through electrospinning to fabricate organic and inorganic complex highly efficient antibacterial and ultraviolet (UV)-resistant membranes. The composite material derived from QPS was designed effectively kill bacteria and improve quaternary ammonium salts’ drug-resistant problem, while the addition of TiO2 can absorb ultraviolet light to catalyze sterilization and decompose residues. The obtained membranes were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transfer infrared spectroscopy (FTIR), thermogravimetric analysis (TG), ultraviolet protection factor (UPF), and antibacterial tests. SEM images indicate slim and uniform morphology of fibers with a diameter of 0.1–0.2 um. FTIR and XPS tests confirm the existence of QPS and TiO2 compounds in the composite membranes, and there is no chemical bond between these substrates and PAN. TG test implies that the membranes have a good thermal stability. UPF of 1648.1 and UVA transmittance of 0.28% indicate that the TiO2/QPS/PAN membranes have an extraordinary UV resistance property. The antibacterial tests show that complex membranes have 99.99% antibacterial rate against both gram-negative Escherichia coli and gram-positive Staphylococcus aureus.



  1. 1.
    Wroblewska MM, Swoboda-Kopec E et al (2002) Epidemiology of clinical isolates of Candida albicans and their susceptibility to triazoles. Int J Antimicrob Agents 20:472–475CrossRefGoogle Scholar
  2. 2.
    Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN (2007) Infectious disease: connecting innate immunity to biocidal polymers. Mater Sci Eng, R 57(1–6):28–64CrossRefGoogle Scholar
  3. 3.
    Cao W, Yue L, Wang Z (2019) High antibacterial activity of chitosan—molybdenum disulfide nanocomposite. Carbohydr Polym 215:226–234CrossRefGoogle Scholar
  4. 4.
    Nazirkar B, Mandewale M, Yamgar R (2019) Synthesis, characterization and antibacterial activity of Cu (II) and Zn (II) complexes of 5-aminobenzofuran-2-carboxylate Schiff base ligands. J Taibah Univ Sci 13(1):440–449CrossRefGoogle Scholar
  5. 5.
    He X, Yang D-P, Zhang X, Liu M, Kang Z, Lin C et al (2019) Waste eggshell membrane-templated CuO–ZnO nanocomposites with enhanced adsorption, catalysis and antibacterial properties for water purification. Chem Eng J 369:621–633CrossRefGoogle Scholar
  6. 6.
    Hu H, Wu X, Wang H, Wang H, Zhou J (2019) Photo-reduction of Ag nanoparticles by using cellulose-based micelles as soft templates: catalytic and antimicrobial activities. Carbohydr Polym 213:419–427CrossRefGoogle Scholar
  7. 7.
    Noh H, Yu J-S, Ko J, Kim JM, Oh S-G (2017) Preparation of poly(ethylene-co-acrylic acid) grafted with aliphatic quaternary ammonium salts as antibacterial polymers. Bull Korean Chem Soc 38(8):890–898CrossRefGoogle Scholar
  8. 8.
    Li L, Ma W, Cheng X, Ren X, Xie Z, Liang J (2016) Synthesis and characterization of biocompatible antimicrobial N-halamine-functionalized titanium dioxide core-shell nanoparticles. Colloids Surf B Biointerfaces 148:511–517CrossRefGoogle Scholar
  9. 9.
    Jatoi AW, Kim IS, Ni QQ (2019) Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr Polym 207:640–649CrossRefGoogle Scholar
  10. 10.
    Ren X, Kou L, Liang J, Worley SD, Tzou Y-M, Huang TS (2008) Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton. Cellulose 15(4):593–598CrossRefGoogle Scholar
  11. 11.
    Chen Y, Tan W, Li Q, Dong F, Gu G, Guo Z (2018) Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity. Int J Biol Macromol 113:1273–1278CrossRefGoogle Scholar
  12. 12.
    Kenawy EL-R, Worley SD, Broughton R (2007) The chemistry and applications of antibacterial polymers: a state-of-the-art review. Biomacromolecules 8(5):1359–1384CrossRefGoogle Scholar
  13. 13.
    Qiu T, Zeng Q, Ao N (2014) Preparation and characterization of chlorinated nature rubber (CNR) based polymeric quaternary phosphonium salt bactericide. Mater Lett 122:13–16CrossRefGoogle Scholar
  14. 14.
    Zhu D, Cheng H, Li J, Zhang W, Shen Y, Chen S et al (2016) Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater Sci Eng, C 61:79–84CrossRefGoogle Scholar
  15. 15.
    He Y, Liu Y-g (2018) Direct fabrication of highly porous graphene/TiO2 composite nanofibers by electrospinning for photocatalytic application. J Cent South Univ 25(9):2182–2189CrossRefGoogle Scholar
  16. 16.
    Verdier T, Coutand M, Bertron A, Roques C (2014) Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: the influence of methodological aspects. Coatings 4(3):670–686CrossRefGoogle Scholar
  17. 17.
    Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17(5):763–773CrossRefGoogle Scholar
  18. 18.
    Wang M, Hou Z, Al Kheraif AA, Xing B, Lin J (2018) Mini review of TiO2-based multifunctional nanocomposites for near-infrared light-responsive phototherapy. Adv Healthc Mater 7(20):e1800351CrossRefGoogle Scholar
  19. 19.
    Yang Z, Zhang Z, Liu K, Yuan Q, Dong B (2015) Controllable assembly of SnO2 nanocubes onto TiO2 electrospun nanofibers toward humidity sensing applications. J Mater Chem C 3(26):6701–6708CrossRefGoogle Scholar
  20. 20.
    Liu Y, Li J, Li L, McFarland S, Ren X, Acevedo O et al (2016) Characterization and mechanism for the protection of photolytic decomposition of N-halamine siloxane coatings by titanium dioxide. ACS Appl Mater Interfaces 8(5):3516–3523CrossRefGoogle Scholar
  21. 21.
    Yang Y, Zhang Z, He Y, Wang Z, Zhao Y, Sun L (2018) Fabrication of Ag@TiO2 electrospinning nanofibrous felts as SERS substrate for direct and sensitive bacterial detection. Sens Actuators B: Chem 273:600–609CrossRefGoogle Scholar
  22. 22.
    Wu W, Liu T, Deng X, Sun Q, Cao X, Feng Y et al (2019) Ecofriendly UV-protective films based on poly(propylene carbonate) biocomposites filled with TiO2 decorated lignin. Int J Biol Macromol 126:1030–1036CrossRefGoogle Scholar
  23. 23.
    Yu J, Pang Z, Zheng C, Zhou T, Zhang J, Zhou H et al (2019) Cotton fabric finished by PANI/TiO2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity. Appl Surf Sci 470:84–90CrossRefGoogle Scholar
  24. 24.
    Zhang S, Demir B, Ren X, Worley SD, Broughton RM, Huang T-S (2019) Synthesis of antibacterial N-halamine acryl acid copolymers and their application onto cotton. J Appl Polym Sci 136(16):47426CrossRefGoogle Scholar
  25. 25.
    Fei Z, Liu B, Zhu M, Wang W, Yu D (2018) Antibacterial finishing of cotton fabrics based on thiol-maleimide click chemistry. Cellulose 25(5):3179–3188CrossRefGoogle Scholar
  26. 26.
    Wang C, Wang W, Zhang L, Zhong S, Yu D (2019) Electrospinning of PAN/Ag NPs nanofiber membrane with antibacterial properties. J Mater Res 34:1–9Google Scholar
  27. 27.
    Fan X, Yin M, Jiang Z, Pan N, Ren X, Huang T-S (2016) Antibacterial poly(3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts. Polym Adv Technol 27(12):1617–1624CrossRefGoogle Scholar
  28. 28.
    Dong P, Huang Z, Nie X, Cheng X, Jin Z, Zhang X (2019) Plasma enhanced decoration of nc-TiO2 on electrospun PVDF fibers for photocatalytic application. Mater Res Bull 111:102–112CrossRefGoogle Scholar
  29. 29.
    Patel S, Konar M, Sahoo H, Hota G (2019) Surface functionalization of electrospun PAN nanofibers with ZnO–Ag heterostructure nanoparticles: synthesis and antibacterial study. Nanotechnology 30(20):205704CrossRefGoogle Scholar
  30. 30.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Nanotechnology 46(30):5670–5703Google Scholar
  31. 31.
    Blundell RK, Licence P (2014) Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions. Phys Chem Chem Phys 16(29):15278–15288CrossRefGoogle Scholar
  32. 32.
    Xu L, Shen Y, Ding Y, Wang L (2018) Superhydrophobic and ultraviolet-blocking cotton fabrics based on TiO2/SiO2 composite nanoparticles. J Nanosci Nanotechnol 18(10):6879–6886CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina

Personalised recommendations