Skip to main content
Log in

Anchoring Co3O4 on BiFeO3: achieving high photocatalytic reduction in Cr(VI) and low cobalt leaching

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel Co3O4–BiFeO3 nanocomposite was successfully prepared via a facile hydrothermal method followed by an impregnation process and well characterized with XRD, TEM, FTIR, XPS, UV–Vis DRS and PL spectrum. XPS and TEM analyses reveal that Co3O4 nanoparticles were successfully anchored on the BiFeO3. The photocatalytic activities of prepared photocatalysts were evaluated by removal of Cr(VI) under visible light (300 W Xe lamp irradiation). The results indicate that the 0.8% CO3O4–BiFeO3 (Co0.8Bi) sample calcined at 500 °C for 4 h showed the best performance, and the rate constant k of Cr(VI) reduction over Co0.8Bi is about 13.7- and 23.3-fold compared with pure BiFeO3 and Co3O4, respectively. More importantly, the CO3O4-BiFeO3 catalyst exhibited highly chemical stability with Co leaching of lower than 34.5 μgL−1, which is attributed to a strong interaction between Bi and Co components in Co3O4–BiFeO3. The effects of Co3O4 loading, calcination temperature and initial pH on catalytic activity and cobalt leaching were optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Zhang R, Pan X, Li F, Zhang L, Zhai S, Mu Q, Liu J, Qu G, Jiang G, Yan B (2014) Cell rescue by nanosequestration: reduced cytotoxicity of an environmental remediation residue Mg(OH)2 nanoflake/Cr(VI) adduct. Environ Sci Technol 48(3):1984–1992

    Article  CAS  Google Scholar 

  2. Assadi A, Dehghani MH, Rastkari N, Nasseri S, Mahvi AH (2012) Photocatalytic reduction of hexavalent chromium in aqueous solutions with zinc oxide nanoparticles and hydrogen peroxide. Environ Prot Eng 38(4):5–16

    CAS  Google Scholar 

  3. Kieber RJ, Willey JD, Zvalaren SD (2002) Chromium speciation in rainwater: temporal variability and atmospheric deposition. Environ Sci Technol 36(24):5321–5327

    Article  CAS  Google Scholar 

  4. Testa JJ, Grela MA, Litter MI (2004) Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol 38(5):1589–1594

    Article  CAS  Google Scholar 

  5. Rengaraj S, Venkataraj S, Yeon JW, Kim Y, Li X, Pang GKH (2007) Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl Catal B Environ 77(1–2):157–165

    Article  CAS  Google Scholar 

  6. Gratzel M (1983) Energy resources through photochemistry and catalysis. Academic Press, New York

    Google Scholar 

  7. Behnajady MA, Bimeghdar S (2014) Synthesis of mesoporous NiO nanoparticles and their application in the adsorption of Cr(VI). Chem Eng J 239:105–113

    Article  CAS  Google Scholar 

  8. Xing Y, Chen X, Wang D (2007) Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater. Environ Sci Technol 41(4):1439–1443

    Article  CAS  Google Scholar 

  9. Khalil LB, Mourad W, Rophael MW (1998) Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl Catal B: Environ 17(3):267–273

    Article  CAS  Google Scholar 

  10. Liu X, Pan L, Lv T, Zhu G, Sun Z, Sun C (2011) Microwave-assisted synthesis of CdS–reduced graphene oxide composites for photocatalytic reduction of Cr(VI). Chem Commun 47:11984–11986

    Article  CAS  Google Scholar 

  11. Zhang Y, Li J, Zhang M, Dionysiou DD (2011) Size-Tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ Sci Technol 45(21):9324–9331

    Article  CAS  Google Scholar 

  12. Yang W, Zhang L, Hu Y, Zhong Y, Wu H, Lou X (2012) Microwave-assisted synthesis of porous Ag2S–Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew Chem Int Ed 51:11669–11672

    Article  Google Scholar 

  13. Yoneyama H, Yamashita Y, Tamura H (1979) Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature 282:817–818

    Article  CAS  Google Scholar 

  14. Parida KM, Naik B (2009) Synthesis of mesoporous TiO2−xNx spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination. J Colloid Interface Sci 333(1):269–276

    Article  CAS  Google Scholar 

  15. Naik B, Parida KM (2010) Solar light active photodegradation of phenol over a FexTi1−xO2−yNy nanophotocatalyst. Ind Eng Chem Res 49(18):8339–8346

    Article  CAS  Google Scholar 

  16. Li Y, Cui W, Liu L, Zong R, Yao W, Liang Y, Zhu Y (2016) The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2: characterization, kinetics, and reaction pathways Appl. Catal. B: Environ. 199:412–423

    Article  CAS  Google Scholar 

  17. Ollis D (2015) Photocatalyzed and photosensitized conversion of organic dyes on porous and non-porous air–solid surfaces: kinetic models reconsidered. Appl Catal B: Environ 165:111–116

    Article  CAS  Google Scholar 

  18. Žerjav G, Arshad MS, Djinović P, Zavašnik J, Pintar A (2017) Electron trapping energy states of TiO2–WO3 composites and their influence on photocatalytic degradation of bisphenol A. Appl Catal B Environ 209:273–284

    Article  Google Scholar 

  19. Naimi-Joubani M, Shirzad-Siboni M, Yang JK, Gholami M, Farzadkia M (2015) Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. J Ind Eng Chem 22:317–323

    Article  CAS  Google Scholar 

  20. Farhadi S, Pourzare K, Bazgir S (2014) Co3O4 nanoplates: synthesis, characterization and study of optical and magnetic properties. J Alloys Compd 587:632–637

    Article  CAS  Google Scholar 

  21. Anipsitakis G, Stathatos E, Dionysiou D (2005) Heterogeneous activation of Oxone using Co3O4. J Phys Chem B 109:13052–13055

    Article  CAS  Google Scholar 

  22. Zhang W, Tay HL, Lim S, Wang Y, Zhong Z, Xu R (2010) Supported cobalt oxide on MgO: highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl Catal B: Environ 102(1–2):93–99

    Article  Google Scholar 

  23. Shukla P, Sun H, Wang S, Ang H, Tade MO (2011) Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. Sep Purif Technol 77(2):230–236

    Article  CAS  Google Scholar 

  24. Liang H, Sun H, Patel A, Shukla P, Zhu Z, Wang S (2012) Excellent performance of mesoporous Co3O4/MnO2 nanoparticles in heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Appl Catal B: Environ 127:330–335

    Article  CAS  Google Scholar 

  25. Hsieh SH, Lee GJ, Chen CY (2013) Hydrothermal synthesis of mesoporous Bi2O3/Co3O4 microsphere and photocatalytic degradation of orange II dyes by visible light. Top Catal 56(9–10):623–629

    Article  CAS  Google Scholar 

  26. Shi P, Su R, Wan F, Zhu M, Li D, Xu S (2012) Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals. Appl Catal B: Environ 123–124:265–272

    Article  Google Scholar 

  27. Gao F, Chen X, Yin K, Dong S, Ren Z, Yuan F, Yu T, Zou Z, Liu JM (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19(19):2889–2892

    Article  CAS  Google Scholar 

  28. Niu F, Chen D, Qin L, Zhang N, Wang J, Chen Z, Huang Y (2015) Facile synthesis of highly efficient p–n heterojunction CuO/BiFeO3 composite photocatalysts with enhanced visible-light photocatalytic activity. ChemCatChem 7:3279–3289

    Article  CAS  Google Scholar 

  29. Shi F, Lu M, Bai Y, Liang F, Song X, Xu G, Fan X (2018) pH controlled excellent photocatalytic activity of a composite designed from CuBi-based metal organic oxide and graphene. Cryst Growth Des 18:5045–5053

    Article  CAS  Google Scholar 

  30. Shi G, Li S, Shi F, Shi X, Cheng X (2018) A facile strategy for synthesis of Ni@C(N) nanocapsules with enhanced catalytic activity for 4-nitrophenol reduction. Colloids Surf A 555:170–179

    Article  CAS  Google Scholar 

  31. Wang Q, Chen X, Yu K, Zhang Y, Cong Y (2013) Synergistic photosensitized removal of Cr(VI) and Rhodamine B dye on amorphous TiO2 under visible light irradiation. J Hazard Mater 246–247:135–144

    Article  Google Scholar 

  32. Troyanchuk IO, Chobot AN, Mantytskaya OS, Tereshko NV (2010) Magnetic properties of Bi(Fe1–xMx)O3 (M = Mn, Ti). Inorg Mater 46(4):424–428

    Article  CAS  Google Scholar 

  33. Vijayakumar S, Kiruthika Ponnalagi A, Nagamuthu S, Muralidharan G (2013) Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochim Acta 106:500–505

    Article  CAS  Google Scholar 

  34. Xia X, Tu J, Mai Y, Wang X, Gu C, Zhao X (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325

    Article  CAS  Google Scholar 

  35. Dou J, Tang Y, Nie L, Andolina CM, Zhang X, House S, Li Y, Yang J, Tao F (2018) Complete oxidation of methane on Co3O4/CeO2 nanocomposite: a synergistic effect. Catal Today 311:48–55

    Article  CAS  Google Scholar 

  36. González Prior J, López Fonseca R, Gutiérrez Ortiz J, Rivas B (2016) Oxidation of 1,2-dichloroethane over nanocube-shaped Co3O4 catalysts. Appl Catal B Environ 199:384–393

    Article  Google Scholar 

  37. Ding Y, Zhu L, Huang A, Zhao X, Zhang X, Tang H (2012) A heterogeneous Co3O4–Bi2O3 composite catalyst for oxidative degradation of organic pollutants in the presence of peroxymonosulfate. Catal Sci Technol 2:1977–1984

    Article  CAS  Google Scholar 

  38. Yang Q, Choi H, Dionysiou D (2007) Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate. Appl Catal B: Environ 74:170–178

    Article  CAS  Google Scholar 

  39. Zhang W, Tay H, Lim S, Wang Y, Zhong Z, Xu R (2010) Supported cobalt oxide on MgO: highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl Catal B Environ 95:93–99

    Article  CAS  Google Scholar 

  40. Shukla P, Sun H, Wang S, Ang H, Tadé M (2011) Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water. Sep Purif Technol 77:230–236

    Article  CAS  Google Scholar 

  41. Hu X, Ji H, Chang F, Luo Y (2014) Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation. Catal Today 224:34–40

    Article  CAS  Google Scholar 

  42. Wu F, Liu W, Qiu J, Li J, Zhou W, Fang Y, Zhang S, Li X (2015) Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Appl Surf Sci 358:425–435

    Article  CAS  Google Scholar 

  43. Shi X, Quan S, Yang L, Shi G, Shi F (2019) Facile synthesis of magnetic Co3O4/BiFeO3 nanocomposite for effective reduction of nitrophenol isomers. Chemosphere 219:914–922

    Article  CAS  Google Scholar 

  44. Chen X, Chen J, Qiao X, Wang D, Cai X (2008) Performance of nano-Co3O4/peroxy- monosulfate system: kinetics and mechanism study using Acid Orange 7 as a model compound. Appl Catal B: Environ 80:116–121

    Article  CAS  Google Scholar 

  45. Kim H, Borse P, Choi W, Lee J (2005) Photocatalytic nanodiodes for visible light photocatalysis. Angew Chem Int Ed 44:4585–4589

    Article  CAS  Google Scholar 

  46. Yao Y, Li G, Ciston S, Lueptow R, Gray K (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42:4952–4957

    Article  CAS  Google Scholar 

  47. Yu J, Zhuang S, Xu X, Zhu W, Feng B, Hu J (2015) Photogenerated electron reservoir in hetero-p–n CuO–ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(VI). J Mater Chem A 3:1199–1207

    Article  CAS  Google Scholar 

  48. Shen L, Wu W, Liang R, Lin R, Wu L (2013) Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 5:9374–9382

    Article  CAS  Google Scholar 

  49. Xiao P, Cai Y, Chen X, Sheng Z, Chang C (2017) Improved electrochemical performance of LiFe0.4Mn0.6PO4/C with Cr3+ doping. RSC Adv 7(50):31558–31566

    Article  CAS  Google Scholar 

  50. Zhang L, Xia W, Liu X, Zhang W (2015) Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water. J Mater Chem A 3(1):331–340

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21571132, 11604222), the Open Fund of National Key Laboratory of Rare Earth Resources Utilization (RERU2017005), the key project of Department of Education of Liaoning Province (LZGD2017002), and the Liaoning Provincial Natural Science Foundation of China (Grant No. 201601155).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanyu Quan or Fanian Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Quan, S., Yang, L. et al. Anchoring Co3O4 on BiFeO3: achieving high photocatalytic reduction in Cr(VI) and low cobalt leaching. J Mater Sci 54, 12424–12436 (2019). https://doi.org/10.1007/s10853-019-03816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03816-x

Navigation