Skip to main content

Advertisement

Log in

Glucose-responsive poly(vinyl alcohol)/β-cyclodextrin hydrogel with glucose oxidase immobilization

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glucose-responsive poly(vinyl alcohol)/β-cyclodextrin (PVA/β-CD) hydrogels cross-linked by citric acid were prepared through an environment-friendly synthesis procedure. The glucose oxidase (GOx) was physically immobilized within the β-CD cavity for accurate detection of interstitial fluid glucose levels reaching approximately 1 mM. We evaluated the viscoelastic behavior of the PVA/β-CD solutions through dynamic oscillatory shear testing, and the PVA/β-CD/GOx hydrogel 10 shows the optimal properties with excellent water absorption (312 ± 17%), low solubility, and long moisture retention time (approximately 4.5 h for complete drying at 37 °C). The PVA/β-CD/GOx hydrogel showed the high flexural and tensile strengths of ≥ 400 and ≥ 5 MPa, respectively. Furthermore, the fabricated PVA/β-CD/GOx hydrogel 10 displayed a linear amperometric response (R2 is 0.984) in the glucose concentration range from 1.0 to 5.0 mM with a relatively high sensitivity of 7.58 µA mM−1 and a low detection limit of 5.141 × 10−4 M at low applied potential (0.27 V vs. Ag/AgCl coated with Prussian blue), indicating its great potential as a patch sensor for noninvasive glucose monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Glikfeld P, Hinz RS, Guy RH (1989) Noninvasive sampling of biological fluids by iontophoresis. Pharm Res 6:988–990

    Article  CAS  Google Scholar 

  2. Tierney MJ, Tamada JA, Potts RO, Jovanovic L, Garg S, Cygnus Research Team (2001) Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens Bioelectron 16:621–629

    Article  CAS  Google Scholar 

  3. Lipani L, Dupont BGR, Doungmene F, Marken F, Tyrrell RM, Guy RH, Ilie A (2018) Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat Nanotechnol 13:504–511

    Article  CAS  Google Scholar 

  4. Zohuriaan-Mehr MJ, Pourjavadi A, Salimi H, Kurdtabar M (2009) Protein- and homo poly(amino acid)-based hydrogels with super-swelling properties. Polym Adv Technol 20:655–671

    Article  CAS  Google Scholar 

  5. Jayaramudu T, Li Y, Ko H, Shishir IR, Kim J (2016) Poly(acrylic acid)–poly(vinyl alcohol) hydrogels for reconfigurable lens actuators. Int J Precis Eng Manuf Green Technol 3(4):375–379

    Article  Google Scholar 

  6. Das J, Sarkar P (2016) Enzymatic electrochemical biosensor for urea with a polyaniline grafted conducting hydrogel composite modified electrode. RSC Adv 6:92520–92533

    Article  CAS  Google Scholar 

  7. Peppas NA, Van Blarcom DS (2016) Hydrogel-based biosensors and sensing devices for drug delivery. J Controlled Release 240:142–150

    Article  CAS  Google Scholar 

  8. Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091

    Article  CAS  Google Scholar 

  9. Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mater Sci Eng C 59:109–119

    Article  CAS  Google Scholar 

  10. Cao Y, Xiong D, Wang K, Niu Y (2017) Semi-degradable porous poly (vinyl alcohol) hydrogel scaffold for cartilage repair: evaluation of the initial and cell-cultured tribological properties. J Mech Behav Biomed Mater 68:163–172

    Article  CAS  Google Scholar 

  11. Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS ONE 12(2):e0172727

    Article  Google Scholar 

  12. Constantin M, Fundeaunu G, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E (2004) Preparation and characterisation of poly(vinyl alcohol)/cyclodextrin microspheres as matrix for inclusion and separation of drugs. Int J Pharm 285:87–96

    Article  CAS  Google Scholar 

  13. Bibby DC, Davies NM, Tucker IG (2000) Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int J Pharm 197:1–11

    Article  CAS  Google Scholar 

  14. Pok S, Myers JD, Madihally SV, Jacot JG (2013) A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater 9:5630–5642

    Article  CAS  Google Scholar 

  15. Durst CA, Cuchiara MP, Mansfield EG, West JL, Grande-Allen KJ (2011) Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater 7:2467–2476

    Article  CAS  Google Scholar 

  16. Tseng H, Cuchiara ML, Durst CA, Cuchiara MP, Lin CJ, West JL, Grande-Allen KJ (2012) Fabrication and mechanical evaluation of anatomically-inspired quasilaminate hydrogel structures with layer-specific formulations. Ann Biomed Eng 41(2):398–407

    Article  Google Scholar 

  17. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly(acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. J Polym Res 21:344. https://doi.org/10.1007/s10965-013-0344-9

    Article  CAS  Google Scholar 

  18. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385

    Article  CAS  Google Scholar 

  19. Kokabi M, Sirousazar M, Hassan ZH (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781

    Article  CAS  Google Scholar 

  20. Nho YC, Park KR (2002) Preparation and properties of PVA/PVP hydrogels containing chitosan by radiation. J Appl Polym Sci 85:1787–1794

    Article  CAS  Google Scholar 

  21. Tang Y-F, Du Y-M, Hu X-W, Shi X-W, Kennedy JF (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr Polym 67:491–499

    Article  CAS  Google Scholar 

  22. Zhang H, Meng Z, Wang Q, Zheng J (2011) A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles–carbon nanotubes composite film. Sens Actuators B 158:23–27

    Article  CAS  Google Scholar 

  23. Sapountzi E, Braiek M, Vocanson F, Chateaux JF, Jaffrezic-Renault N, Lagarde F (2017) Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sens Actuators B 238:392–401

    Article  CAS  Google Scholar 

  24. Mesch M, Zhang C, Braun PV, Giessen H (2015) Functionalized hydrogel on plasmonic nanoantennas for noninvasive glucose sensing. ACS Photonics 2:475–480

    Article  CAS  Google Scholar 

  25. Ren G, Xu X, Liu Q, Cheng J, Yuan X, Wu L, Wan Y (2006) Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym 66:1559–1564

    Article  CAS  Google Scholar 

  26. Crescenzi V, Paradossi G, Desideri P, Dentini M, Cavalieri F, Amici E, Lisi R (1997) New hydrogels based on carbohydrate and on carbohydrate-synthetic polymer networks. Polym Gels Netw 5:225–239

    Article  CAS  Google Scholar 

  27. Hernández R, Rusa M, Rusa CC, López D, Mijangos C, Tonelli AE (2004) Controlling PVA hydrogels with γ-cyclodextrin. Macromolecules 37:9620–9625

    Article  Google Scholar 

  28. Ali H, Michael RD, Elizabeth EH, Jose IRDC (2017) Glucose oxidase stabilization against thermal inactivation using high hydrostatic pressure and hydrophobic modification. Biotechnol Bioeng 114(3):516–525

    Article  Google Scholar 

  29. Emese B, Daniel B, Anamaria T, Francisc P, Szilvia K, Tivadar F (2016) Recyclable soild-phase biocatalyst with improved stability by sol–gel entrapment of β-d-galactosidase. J Mol Catal B Enzym 123:81–90

    Article  Google Scholar 

  30. Fatma K, Tamer U (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–649

    Article  Google Scholar 

  31. Peter LS, Diana W, Tamas V, Zsombor KN, Laszlo P, Gyorgy M (2016) Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases. Bioprocess Biosyst Eng 39:449–459

    Article  Google Scholar 

  32. Saallah S, Naim MN, Lenggoro IW, Mohd NM, Fitrah ABN, Maseo G (2016) Immobilisation of cyclodextrin glucanotransferase into polyvinyl alcohol (PVA) nanofibers via electrospinning. Biotechnol Rep 10:44–48

    Article  Google Scholar 

  33. Hajizadeh K, Halsall HB, Heineman WR (1991) Immobilization of lactate oxidase in a poly(vinyl alcohol) matrix on platinized graphite electrodes by chemical cross-linking with isocyanate. Talanta 38(1):37–47

    Article  CAS  Google Scholar 

  34. Hajizadeh K, Halsall HB, Heineman WR (1991) Gamma-irradiation immobilization of lactate oxidase in poly(vinyl alcohol) on platinized graphite electrodes. Anal Chim Acta 243:23–32

    Article  CAS  Google Scholar 

  35. Thiebaud S, Aburto J, Alric I, Borredon E, Bikiaris D, Prinos J, Panayiotou C (1997) Properties of fatty-acid esters of starch and their blends with LDPE. J Appl Polym Sci 65:705–721

    Article  CAS  Google Scholar 

  36. Tang S, Zou P, Xiong H, Tang H (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 72:521–526

    Article  CAS  Google Scholar 

  37. Han J, Lei T, Wu Q (2014) High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism. Carbohydr Polym 102:306–316

    Article  CAS  Google Scholar 

  38. Velmurugan R, Gupta NK, Solaimurugan S, Elayaperumal A (2004) The effect of stitching on FRP cylindrical shells under axial compression. Int J Impact Eng 30:923–938

    Article  Google Scholar 

  39. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233

    Article  CAS  Google Scholar 

  40. Zhang W, Chen M, Diao G (2011) Electrospinning β-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture. Carbohydr Polym 86:1410–1416

    Article  CAS  Google Scholar 

  41. Gao Z, Zhao X (2004) Preparation and electrorheological characteristics of β-cyclodextrin–epichlorohydrin–starch polymer suspensions. J Appl Polym Sci 93:1681–1686

    Article  CAS  Google Scholar 

  42. Liu S, Ju H (2003) Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 19:177–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (No. R-2018-00235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Oh Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G.J., Yoon, K.J. & Kim, K.O. Glucose-responsive poly(vinyl alcohol)/β-cyclodextrin hydrogel with glucose oxidase immobilization. J Mater Sci 54, 12806–12817 (2019). https://doi.org/10.1007/s10853-019-03805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03805-0

Navigation