Skip to main content
Log in

Theoretical and numerical investigations of rod growth of an Ni–Zr eutectic alloy

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the directional solidification of NiZr–NiZr\(_2\) eutectics under isothermal conditions is investigated through numerical and theoretical means. Multiple three-dimensional phase-field simulations, including a large-scale simulation, are performed to study the free pattern selection and the velocity–spacing relation of the evolving solidification microstructures. The computed velocities for different spacings of the stoichiometric NiZr rods in the as-well stoichiometric NiZr\(_2\) matrix are compared with the predictions of the classical Jackson–Hunt analysis. Due to certain simplifying assumptions invoked in the original theory which are not entirely representative of the numerically realized microstructures, significant deviations are observed between the two. In view of this, an extended theory is formulated accounting for the global hexagonal arrangement of the evolving rods as well as the solidification front curvatures. Owing to that, a superior compliance is achieved between the analytical and simulated growth kinetics. The key elements of symmetry incorporation are of particular importance, especially in applications to ternary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Basu J, Murty BS, Ranganathan S (2008) Glass forming ability: miedema approach to (Zr, Ti, Hf)–(Cu, Ni) binary and ternary alloys. J Alloys Compd 465(1):163–172

    Article  CAS  Google Scholar 

  2. Dong YD, Gregan G, Scott MG (1981) Formation and stability of Nickel–Zirconium glasses. J Non-Cryst Solids 43(3):403–415

    Article  CAS  Google Scholar 

  3. Huang L, Li S (2013) Glass formation in Ni–Zr–(Al) alloy systems. J Mater 2013:575640

    Google Scholar 

  4. Smith JF, Jiang Q, Lück R, Predel B (1991) The heat capacities of solid Ni–Zr alloys and their relationship to the glass transition. J Phase Equilib 12(5):538–545

    Article  CAS  Google Scholar 

  5. Ray R, Szymanski D (1973) Electron diffraction study of a noncrystalline Zr–Ni phase. Metall Mater Trans B 4(8):1785–1790

    Article  CAS  Google Scholar 

  6. Altounian Z, Guo-hua T, Strom-Olsen JO (1983) Crystallization characteristics of Ni–Zr metallic glasses from Ni20Zr80 to Ni70Zr30. J Appl Phys 54(6):3111–3116

    Article  CAS  Google Scholar 

  7. Kobold R, Kuang WW, Wang H, Hornfeck W, Kolbe M, Herlach DM (2017) Dendrite growth velocity in the undercooled melt of glass forming Ni50Zr50 compound. Philos Mag Lett 97(6):249–256

    Article  CAS  Google Scholar 

  8. Kobold R (2016) Crystal growth in undercooled melts of glass forming Zr-based alloys. PhD thesis, Ruhr-Universität Bochum, Universitätsbibliothek

  9. Zaitsev AI, Zaitseva NE, Shakhpazov EK, Kodentsov AA (2002) Thermodynamic properties and phase equilibria in the Nickel–Zirconium system. The liquid to amorphous state transition. Phys Chem Chem Phys 4(24):6047–6058

    Article  CAS  Google Scholar 

  10. Shao G (2000) Prediction of amorphous phase stability in metallic alloys. J Appl Phys 88(7):4443–4445

    Article  CAS  Google Scholar 

  11. Ghosh G (1994) Thermodynamics and kinetics of stable and metastable phases in the Ni–Zr system. J Mater Res 9(3):598–616

    Article  CAS  Google Scholar 

  12. Abe T, Onodera H, Shimono M, Ode M (2005) Thermodynamic modeling of the undercooled liquid in the Ni–Zr system. Mater Trans 46(12):2838–2843

    Article  CAS  Google Scholar 

  13. Voigtmann T, Meyer A, Holland-Moritz D, Stüber S, Hansen T, Unruh T (2008) Atomic diffusion mechanisms in a binary metallic melt. EPL (Europhys Lett) 82(6):66001

    Article  Google Scholar 

  14. Holland-Moritz D, Stüber S, Hartmann H, Unruh T, Meyer A (2009) Ni self-diffusion in Zr–Ni(–Al) melts. Int J Phys Conf Ser 144:012119

    Article  Google Scholar 

  15. Altounian Z, Guo-hua T, Strom-Olsen JO (1982) Crystallization characteristics of Cu–Zr metallic glasses from Cu70Zr30 to Cu25Zr75. J Appl Phys 53(7):4755–4760

    Article  Google Scholar 

  16. The experiments are conducted as part of the current work

  17. Tan Y, Li J, Wang J, Kolbe M, Kou H (2018) Microstructure characterization of CoCrFeNiMnPdx eutectic high-entropy alloys. J Alloys Compd 731:600–611

    Article  CAS  Google Scholar 

  18. Hötzer J, Kellner M, Steinmetz P, Nestler B (2016) Applications of the phase-field method for the solidification of microstructures in multi-component systems. J Indian Inst Sci 96(3):235–256

    Google Scholar 

  19. Hötzer J, Jainta M, Steinmetz P, Nestler B, Dennstedt A, Genau A, Bauer M, Köstler H, Rüde U (2015) Large scale phase-field simulations of directional ternary eutectic solidification. Acta Mater 93:194–204

    Article  Google Scholar 

  20. Hötzer J, Steinmetz P, Dennstedt A, Genau A, Kellner M, Sargin I, Nestler B (2017) Influence of growth velocity variations on the pattern formation during the directional solidification of ternary eutectic Al–Ag–Cu. Acta Mater. 136:335–346

    Article  Google Scholar 

  21. Steinmetz P, Kellner M, Hötzer J, Dennstedt A, Nestler B (2016) Phase-field study of the pattern formation in Al–Ag–Cu under the influence of the melt concentration. Comput Mater Sci 121:6–13

    Article  CAS  Google Scholar 

  22. Noubary KD, Kellner M, Steinmetz P, Hötzer J, Nestler B (2017) Phase-field study on the effects of process and material parameters on the tilt angle during directional solidification of ternary eutectics. Comput Mater Sci 138:403–411

    Article  Google Scholar 

  23. Kim SG, Kim WT, Suzuki T, Ode M (2004) Phase-field modeling of eutectic solidification. J Cryst Growth 261(1):135–158

    Article  CAS  Google Scholar 

  24. Choudhury A, Plapp M, Nestler B (2011) Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys. Phys Rev E 83(5):051608

    Article  Google Scholar 

  25. Plapp M, Bottin-Rousseau S, Faivre G, Akamatsu S (2017) Eutectic solidification patterns: interest of microgravity environment. CR Mécanique 345(1):56–65

    Article  Google Scholar 

  26. Plapp M (2007) Three-dimensional phase-field simulations of directional solidification. J Cryst Growth 303(1):49–57

    Article  CAS  Google Scholar 

  27. Parisi A, Plapp M, Akamatsu S, Bottin-Rousseau S, Perrut M, Faivre G (2005) Three-dimensional phase-field simulations of eutectic solidification and comparison to in situ experimental observations. TMS (The Minerals, Metals & Materials Society)

  28. Parisi A, Plapp M (2008) Stability of lamellar eutectic growth. Acta Mater 56(6):1348–1357

    Article  CAS  Google Scholar 

  29. Plapp M, Karma A (2002) Eutectic colony formation: a phase-field study. Phys Rev E 66(6):061608

    Article  Google Scholar 

  30. Lahiri A, Tiwary C, Chattopadhyay K, Choudhury A (2017) Eutectic colony formation in systems with interfacial energy anisotropy: a phase field study. Comput Mater Sci 130:109–120

    Article  CAS  Google Scholar 

  31. Pusztai T, Rátkai L, Szállás A, Gránásy L (2013) Spiraling eutectic dendrites. Phy Rev E 87(3):032401

    Article  Google Scholar 

  32. Hötzer J, Steinmetz P, Jainta M, Schulz S, Kellner M, Nestler B, Genau A, Dennstedt A, Bauer M, Köstler H et al (2016) Phase-field simulations of spiral growth during directional ternary eutectic solidification. Acta Mater 106:249–259

    Article  Google Scholar 

  33. Rátkai L, Szállás A, Pusztai T, Mohri T, Gránásy L (2015) Ternary eutectic dendrites: pattern formation and scaling properties. J Chem Phys 142(15):154501

    Article  Google Scholar 

  34. Steinmetz P, Hötzer J, Kellner M, Dennstedt A, Nestler B (2016) Large-scale phase-field simulations of ternary eutectic microstructure evolution. Comput Mater Sci 117:205–214

    Article  CAS  Google Scholar 

  35. Kellner M, Sprenger I, Steinmetz P, Hötzer J, Nestler B, Heilmaier M (2017) Phase-field simulation of the microstructure evolution in the eutectic NiAl–34Cr system. Comput Mater Sci 128:379–387

    Article  CAS  Google Scholar 

  36. Yanli L, Jia D, Tingting H, Chen Z, Zhang L (2014) Phase-field study of the effects of elastic strain energy on the occupation probability of Cr atom in Ni–Al–Cr alloy. Superlattice Microst 66:105–111

    Article  Google Scholar 

  37. Wu K, Chang YA, Wang Y (2004) Simulating interdiffusion microstructures in Ni–Al–Cr diffusion couples: a phase field approach coupled with calphad database. Scripta Mater 50(8):1145–1150

    Article  CAS  Google Scholar 

  38. Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. AIME Met Soc Trans 236:1129–1142

    CAS  Google Scholar 

  39. Donaghey LF, Tiller WA (1968) On the diffusion of solute during the eutectoid and eutectic transformations, part I. Mater Sci Eng 3(4):231–239

    Article  CAS  Google Scholar 

  40. Trivedi R, Magnin P, Kurz W (1987) Theory of eutectic growth under rapid solidification conditions. Acta Metall 35(4):971–980

    Article  CAS  Google Scholar 

  41. Himemiya T, Umeda T (1999) Three-phase planar eutectic growth models for a ternary eutectic system. Mater Trans JIM 40(7):665–674

    Article  CAS  Google Scholar 

  42. Zheng LL, Larson DJ Jr, Zhang H (2000) Revised form of Jackson–Hunt theory: application to directional solidification of MnBi/Bi eutectics. J Cryst Growth 209(1):110–121

    Article  CAS  Google Scholar 

  43. Ludwig A, Leibbrandt S (2004) Generalised ‘Jackson–Hunt’model for eutectic solidification at low and large peclet numbers and any binary eutectic phase diagram. Mater Sci Eng A 375:540–546

    Article  Google Scholar 

  44. Liu S, Lee JH, Trivedi R (2011) Dynamic effects in the lamellar-rod eutectic transition. Acta Mater 59(8):3102–3115

    Article  CAS  Google Scholar 

  45. Ankit K, Choudhury A, Qin C, Schulz S, McDaniel M, Nestler B (2013) Theoretical and numerical study of lamellar eutectoid growth influenced by volume diffusion. Acta Mater 61(11):4245–4253

    Article  CAS  Google Scholar 

  46. Catalina AV, Voorhees PW, Huff RK, Genau AL (2015) A model for eutectic growth in multicomponent alloys. In: IOP conference series: materials science and engineering. vol 84, pp. 012085. IOP Publishing

  47. Senninger O, Voorhees PW (2016) Eutectic growth in two-phase multicomponent alloys. Acta Mater 116:308–320

    Article  CAS  Google Scholar 

  48. Lahiri A, Choudhury A (2017) Revisiting Jackson-Hunt calculations: unified theoretical analysis for generic multi-phase growth in a multi-component system. Acta Mater 133:316–332

    Article  CAS  Google Scholar 

  49. Nani ES, Nestler B, Ankit K (2018) Analyzing the cooperative growth of intermetallic phases with a curved solidification front. Acta Mater 159:135–149

    Article  CAS  Google Scholar 

  50. Nani ES, Nestler B (2019) Extension of Jackson–Hunt analysis for curved solid–liquid interfaces. J Cryst Growth 512:230–240

    Article  CAS  Google Scholar 

  51. Plapp M (2011) Unified derivation of phase-field models for alloy solidification from a grand-potential functional. Phys Rev E 84(3):031601

    Article  Google Scholar 

  52. Choudhury A, Nestler B (2012) Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. Phys Rev E 85(2):021602

    Article  Google Scholar 

  53. Hashimoto K, Abe T (2007) NiZr. Calphad database. Particle Simulation and Thermodynamics Group, National Institute for Materials Science, 2

  54. Hu SY, Murray J, Weiland H, Liu ZK, Chen LQ (2007) Thermodynamic description and growth kinetics of stoichiometric precipitates in the phase-field approach. Calphad 31(2):303–312

    Article  CAS  Google Scholar 

  55. Nakajima H, Sprengel W, Nonaka K (1996) Diffusion in intermetallic compounds. Intermetallics 4:S17–S28

    Article  CAS  Google Scholar 

  56. Vondrous A, Selzer M, Hötzer J, Nestler B (2013) Parallel computing for phase-field models. Int J High Perform C. https://doi.org/10.1144/1094342013490972

    Article  Google Scholar 

  57. Hötzer J, Reiter A, Hierl H, Steinmetz P, Selzer M, Nestler B (2018) The parallel multi-physics phase-field framework pace3d. J Comput Sci 26:1–12

    Article  Google Scholar 

  58. Hötzer J, Tschukin O, Said MB, Berghoff M, Jainta M, Barthelemy G, Smorchkov N, Schneider D, Selzer M, Nestler B (2015) Calibration of a multi-phase field model with quantitative angle measurement. J Mater Sci 51(4):1788–1797. https://doi.org/10.1007/s10853-015-9542-7

    Article  CAS  Google Scholar 

  59. Wang F, Choudhury A, Nestler B (2012) Solidification morphologies in monotectic alloys. In: IOP conference series: materials science and engineering. vol 27, pp 012027. IOP Publishing

  60. Choudhury A, Geeta M, Nestler B (2013) Influence of solid–solid interface anisotropy on three-phase eutectic growth during directional solidification. EPL (Europhys Lett) 101(2):26001

    Article  Google Scholar 

  61. Parisi A, Plapp M (2010) Defects and multistability in eutectic solidification patterns. EPL (Europhys Lett) 90(2):26010

    Article  Google Scholar 

  62. Kellner M, Kunz W, Steinmetz P, Hötzer J, Nestler B (2018) Phase-field study of dynamic velocity variations during directional solidification of eutectic NiAl–34Cr. Comput Mater Sci 145:291–305

    Article  CAS  Google Scholar 

  63. Kellner M, Sprenger I, Steinmetz P, Hötzer J, Nestler B, Heilmaier M (2017) Phase-field simulation of the microstructure evolution in the eutectic NiAl–34Cr system. Comput Mater Sci 128:379–387

    Article  CAS  Google Scholar 

  64. Steinmetz P, Hötzer J, Kellner M, Genau A, Nestler B (2018) Study of pattern selection in 3D phase-field simulations during the directional solidification of ternary eutectic Al–Ag–Cu. Comput Mater Sci 148:131–140

    Article  CAS  Google Scholar 

  65. Kurz W (2011) Eutectic growth before and after Jackson and Hunt 1966. In: Fan Z, Stone IC (eds) Proceedings of the John Hunt International Symposium. pp 1–15

Download references

Acknowledgements

The authors gratefully acknowledge funding by the German Research Foundation (DFG) through Grant Number NE \(822/22-1\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanth Nani Enugala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 725 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enugala, S.N., Kellner, M., Kobold, R. et al. Theoretical and numerical investigations of rod growth of an Ni–Zr eutectic alloy. J Mater Sci 54, 12605–12622 (2019). https://doi.org/10.1007/s10853-019-03802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03802-3

Navigation