Skip to main content
Log in

BaAs3: a narrow gap 2D semiconductor with vacancy-induced semiconductor–metal transition from first principles

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Searching for novel two-dimensional (2D) materials is highly desired in the field of nanoelectronics. We here predict a new 2D crystal barium triarsenide (BaAs3) with a series of encouraging functionalities within density functional theory. Being kinetically and thermally stable, the monolayer and bilayer forms of BaAs3 possess narrow indirect band gaps of 0.74 eV and 0.34 eV, respectively, with high hole mobilities on the order of ~ 103 cm2 V−1 s−1. The electronic properties of 2D BaAs3 can be manipulated by controlling the layer thickness. The favorable cleavage energy reveals that layered BaAs3 can be produced as a freestanding 2D material. Furthermore, by introducing vacancy defects monolayer BaAs3 can be transformed from a semiconductor to a metal. Two-dimensional BaAs3 may find promising applications in nanoelectronic devices, such as memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  2. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. https://doi.org/10.1038/nnano.2010.279

    Article  Google Scholar 

  3. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501. https://doi.org/10.1038/nnano.2013.100

    Article  Google Scholar 

  4. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868. https://doi.org/10.1021/nl102661q

    Article  Google Scholar 

  5. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. https://doi.org/10.1021/nl802558y

    Article  Google Scholar 

  6. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277. https://doi.org/10.1021/ja404523s

    Article  Google Scholar 

  7. Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 11:218–230. https://doi.org/10.1038/nnano.2015.340

    Article  Google Scholar 

  8. Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728. https://doi.org/10.1039/C5EE03732H

    Article  Google Scholar 

  9. Ran J, Zhu B, Qiao S-Z (2017) Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew Chem Int Ed 56:10373–10377. https://doi.org/10.1002/anie.201703827

    Article  Google Scholar 

  10. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377. https://doi.org/10.1038/nnano.2014.35

    Article  Google Scholar 

  11. Fan T, Zhou Y, Qiu M, Zhang H (2018) Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J Innov Opt Health Sci. https://doi.org/10.1142/s1793545818300033

    Google Scholar 

  12. Zhang X, Hou L, Ciesielski A, Samorì P (2016) 2D materials beyond graphene for high-performance energy storage applications. Adv Energy Mater. https://doi.org/10.1002/aenm.201600671

    Google Scholar 

  13. Ma Y, Dai Y, Guo M, Yu L, Huang B (2013) Tunable electronic and dielectric behavior of GaS and GaSe monolayers. Phys Chem Chem Phys. https://doi.org/10.1039/c3cp50233c

    Google Scholar 

  14. Wang F, Wang Z, Xu K, Wang F, Wang Q, Huang Y, Yin L, He J (2015) Tunable GaTe-MoS2 van der Waals p–n Junctions with novel optoelectronic performance. Nano Lett 15:7558–7566. https://doi.org/10.1021/acs.nanolett.5b03291

    Article  Google Scholar 

  15. Qiao J, Kong X, Hu Z-X, Yang F, Ji W (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun. https://doi.org/10.1038/ncomms5475

    Google Scholar 

  16. Miao N, Xu B, Bristowe NC, Zhou J, Sun Z (2017) Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer. J Am Chem Soc 139:11125–11131. https://doi.org/10.1021/jacs.7b05133

    Article  Google Scholar 

  17. Jing Y, Ma Y, Li Y, Heine T (2017) GeP3: a small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement. Nano Lett 17:1833–1838. https://doi.org/10.1021/acs.nanolett.6b05143

    Article  Google Scholar 

  18. Sun S, Meng F, Wang H, Wang H, Ni Y (2018) Novel two-dimensional semiconductor SnP3: high stability, tunable bandgaps and high carrier mobility explored using first-principles calculations. J Mater Chem A 6:11890–11897. https://doi.org/10.1039/C8TA02494D

    Article  Google Scholar 

  19. Yuan J-H, Cresti A, Xue K-H, Song Y-Q, Su H-L, Li L-H, Miao N-H, Sun Z-M, Wang J-F, Miao X-S (2019) TlP5: an unexplored direct band gap 2D semiconductor with ultra-high carrier mobility. J Mater Chem C. https://doi.org/10.1039/c8tc05164j

    Google Scholar 

  20. Lu N, Zhuo Z, Guo H, Wu P, Fa W, Wu X, Zeng XC (2018) CaP3: a new two-dimensional functional material with desirable band gap and ultrahigh carrier mobility. J Phys Chem Lett 9:1728–1733. https://doi.org/10.1021/acs.jpclett.8b00595

    Article  Google Scholar 

  21. Li F, Wu H, Meng Z, Lu R, Pu Y (2019) Tunable topological state, high hole-carrier mobility, and prominent sunlight absorbance in monolayered calcium triarsenide. J Phys Chem Lett 10:761–767. https://doi.org/10.1021/acs.jpclett.9b00033

    Article  Google Scholar 

  22. Liu Z, Wang H, Sun J, Sun R, Wang ZF, Yang J (2018) Penta-Pt2N4: an ideal two-dimensional material for nanoelectronics. Nanoscale 10:16169–16177. https://doi.org/10.1039/C8NR05561K

    Article  Google Scholar 

  23. Yuan J-H, Song Y-Q, Chen Q, Xue K-H, Miao X-S (2018) Single-layer planar penta-X2N4 (X=Ni, Pd and Pt) as direct-bandgap semiconductors from first principle calculations. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.11.041

    Google Scholar 

  24. Yuan H, Li Z, Yang J (2018) Atomically thin semiconducting penta-PdP2 and PdAs2 with ultrahigh carrier mobility. J Mater Chem C 6:9055–9059. https://doi.org/10.1039/C8TC03368D

    Article  Google Scholar 

  25. Yuan J-H, Zhang B, Song Y-Q, Wang J-F, Xue K-H, Miao X-S (2019) Planar penta-transition metal phosphide and arsenide as narrow-gap semiconductors with ultrahigh carrier mobility. J Mater Sci 54:7035–7047. https://doi.org/10.1007/s10853-019-03380-4

    Article  Google Scholar 

  26. Ghosh B, Puri S, Agarwal A, Bhowmick S (2018) SnP3: a previously unexplored two-dimensional material. J Phys Chem C 122:18185–18191. https://doi.org/10.1021/acs.jpcc.8b06668

    Article  Google Scholar 

  27. Yao S, Zhang X, Zhang Z, Chen A, Zhou Z (2019) 2D Triphosphides: SbP3 and GaP3 monolayer as promising photocatalysts for water splitting. Int J Hydrog Energy 44:5948–5954. https://doi.org/10.1016/j.ijhydene.2019.01.106

    Article  Google Scholar 

  28. Bauhofer W, Wittmann M, Schnering HGv (1981) Structure, electrical and magnetic properties of CaAs3, SrAs3, BaAs3 and EuAs3. J Phys Chem Solids 42:687–695. https://doi.org/10.1016/0022-3697(81)90122-0

    Article  Google Scholar 

  29. Xu Q, Yu R, Fang Z, Dai X, Weng H (2017) Topological nodal line semimetals in the CaP3 family of materials. Phys Rev B. https://doi.org/10.1103/physrevb.95.045136

    Google Scholar 

  30. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  33. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  34. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  35. Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys. https://doi.org/10.1063/1.2404663

    Google Scholar 

  36. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. https://doi.org/10.1063/1.3382344

    Google Scholar 

  37. Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B. https://doi.org/10.1103/PhysRevB.78.134106

    Google Scholar 

  38. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643. https://doi.org/10.1063/1.463940

    Article  Google Scholar 

  39. Xue K-H, Yuan J-H, Fonseca LRC, Miao X-S (2018) Improved LDA-1/2 method for band structure calculations in covalent semiconductors. Comput Mater Sci 153:493–505. https://doi.org/10.1016/j.commatsci.2018.06.036

    Article  Google Scholar 

  40. Ferreira LG, Marques M, Teles LK (2008) Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys Rev B. https://doi.org/10.1103/PhysRevB.78.125116

    Google Scholar 

  41. Yuan J-H, Chen Q, Fonseca LR, Xu M, Xue K, Miao X (2018) GGA-1/2 self-energy correction for accurate band structure calculations: the case of resistive switching oxides. J Phys Commun. https://doi.org/10.1088/2399-6528/aade7e

    Google Scholar 

  42. Kamal C, Ezawa M (2015) Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B. https://doi.org/10.1103/physrevb.91.085423

    Google Scholar 

  43. Wang W, Dai S, Li X, Yang J, Srolovitz DJ, Zheng Q (2015) Measurement of the cleavage energy of graphite. Nat Commun 6:7853. https://doi.org/10.1038/ncomms8853

    Article  Google Scholar 

  44. Song Y-Q, Yuan J-H, Li L-H, Xu M, Wang J-F, Xue K-H, Miao X-S (2019) KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism. Nanoscale. https://doi.org/10.1039/c8nr08046a

    Google Scholar 

  45. Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: the electron localization function. Angew Chem Int Ed Engl 36:1808–1832. https://doi.org/10.1002/anie.199718081

    Article  Google Scholar 

  46. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  Google Scholar 

  47. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/21/8/084204

    Google Scholar 

  48. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360. https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  49. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28:899–908. https://doi.org/10.1002/jcc.20575

    Article  Google Scholar 

  50. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80. https://doi.org/10.1103/PhysRev.80.72

    Article  Google Scholar 

  51. Lang H, Zhang S, Liu Z (2016) Mobility anisotropy of two-dimensional semiconductors. Phys Rev B. https://doi.org/10.1103/physrevb.94.235306

    Google Scholar 

  52. Zhou M, Chen X, Li M, Du A (2017) Widely tunable and anisotropic charge carrier mobility in monolayer tin(ii) selenide using biaxial strain: a first-principles study. J Mater Chem C 5:1247–1254. https://doi.org/10.1039/C6TC04692D

    Article  Google Scholar 

  53. Van de Walle CG, Neugebauer J (2004) First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95:3851–3879. https://doi.org/10.1063/1.1682673

    Article  Google Scholar 

  54. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83. https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  55. Li Y, Zhou Z, Shen P, Chen Z (2009) Spin gapless semiconductor − metal − half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 3:1952–1958. https://doi.org/10.1021/nn9003428

    Article  Google Scholar 

  56. Lu JJ, Lu YM, Tasi SI, Hsiung TL, Wang HP, Jang LY (2007) Conductivity enhancement and semiconductor–metal transition in Ti-doped ZnO films. Opt Mater 29:1548–1552. https://doi.org/10.1016/j.optmat.2006.08.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11704134 and the Fundamental Research Funds of Wuhan City under Grant No. 2017010201010106. K.-H. Xue received support from China Scholarship Council (No. 201806165012). The authors also acknowledge support from Hubei Engineering Research Center on Microelectronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan-Hao Xue.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1535 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, P., Yuan, JH., Song, YQ. et al. BaAs3: a narrow gap 2D semiconductor with vacancy-induced semiconductor–metal transition from first principles. J Mater Sci 54, 12676–12687 (2019). https://doi.org/10.1007/s10853-019-03796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03796-y

Navigation