Skip to main content
Log in

Lightweight TiC–(Fe–Al) ceramic–metal composites made in situ by pressureless melt infiltration

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lightweight ceramic–metal (cermet) composites combine stiffness and hardness with fracture toughness and ductility. TiC and Al are ideal pairs among lightweight cermet composites because of their relatively high strength-to-weight ratios, but these materials are hard to process in solid state or with Al melt infiltration without making an aluminum carbide phase, which is detrimental to mechanical properties. In this research, Fe is added to a TiC powder preform to reduce the activity of Al with TiC during Al melt infiltration and to aid in pressing TiC preforms, making a lightweight TiC–(Fe–Al) composite while avoiding other, unwanted phases. The composites are made by first pressing TiC powder mixed with Fe followed by Al melt infiltration; the result is a composite with high TiC content in a two-phase matrix, both of which are Fe–Al-based. The composite has low density, low porosity, high hardness, no detectable Al4C3 phase with X-ray diffraction and retains shape well during infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rawal SP (2001) Metal-matrix composites for space applications. JOM 53(4):14–17. https://doi.org/10.1007/s11837-001-0139-z

    Article  CAS  Google Scholar 

  2. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites? A review. J Mater Sci 26(5):1137–1156. https://doi.org/10.1007/BF00544448

    Article  CAS  Google Scholar 

  3. Delannay F, Froyen L, Deruyttere A (1987) The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites composites. J Mater Sci 22(1):1–16. https://doi.org/10.1007/BF01160545

    Article  CAS  Google Scholar 

  4. Richerson D (2005) Modern ceramic engineering: properties, processing, and use in design. CRC Press, Boca Raton

    Book  Google Scholar 

  5. Vallauri D, Adrián IA, Chrysanthou A (2008) TiC-TiB2 composites: a review of phase relationships, processing and properties. J Eur Ceram Soc 28(8):1697–1713

    Article  CAS  Google Scholar 

  6. Rhee SK (1970) Wetting of ceramics by liquid aluminum. J Am Ceram Soc 53(7):386–389

    Article  CAS  Google Scholar 

  7. Lin Q, Shen P, Yang L, Jin S, Jiang Q (2011) Wetting of TiC by molten Al at 1123–1323 K. Acta Mater 59(5):1898–1911

    Article  CAS  Google Scholar 

  8. Aguilar E, León C, Contreras A, López V, Drew RA, Bedolla E (2002) Wettability and phase formation in TiC/Al-alloys assemblies. Compos Part A Appl Sci Manuf 33(10):1425–1428

    Article  Google Scholar 

  9. Muscat D, Shanker K, Drew RAL (1992) Al/TiC composites produced by melt infiltration. Mater Sci Technol 8(11):971–976

    Article  CAS  Google Scholar 

  10. Viala JC, Peronnet M, Bosselet F, Bouix J (1999) Chemical compatibility between aluminium base matrices and light refractory carbide reinforcements. In: ICCM12 Proceedings. Cambridge, UK, pp 739–747

  11. Lee KB, Sim HS, Kwon H (2005) Reaction products of Al/TiC composites fabricated by the pressureless infiltration technique. Metall Mater Trans A 36(9):2517–2527

    Article  Google Scholar 

  12. Kennedy AR, Weston DP, Jones MI (2001) Reaction in Al-TiC metal matrix composites. Mater Sci Eng A 316(1–2):32–38

    Article  Google Scholar 

  13. López VH, Kennedy AR (2006) Flux-assisted wetting and spreading of Al on TiC. J Colloid Interface Sci 298(1):356–362

    Article  Google Scholar 

  14. Trujillo‐Vázquez E, Pech‐Canul MI, Gallardo‐Heredia SA, Flores‐García JC (2013) Behavior of Al 4 C 3 in Al/TiC composites under controlled humid environment. In: TMS2013 supplemental proceedings. Wiley, Hoboken, pp 1085–1093

  15. Viala JC, Peronnet M, Bosselet F (1998) Chemical compatibility between aluminum base matrices and light refractory carbide reinforcements. In: JC Viala, P. Fortier, J

  16. Kononnako VI, Shveikin GP, Sukhman AL, Lomovtsev VI, Mitrofanov BV (1976) Chemical compatibility of titanium carbide with aluminum, gallium, and indium melts. Sov Powder Metall Met Ceram 15(9):699–702

    Article  Google Scholar 

  17. Xiao G, Fan Q, Gu M, Jin Z (2006) Microstructural evolution during the combustion synthesis of TiC–Al cermet with larger metallic particles. Mater Sci Eng A 425(1–2):318–325

    Article  Google Scholar 

  18. Ward-Close CM, Minor R, Doorbar PJ (1996) Intermetallic-matrix composites—a review. Intermetallics 4(3):217–229

    Article  CAS  Google Scholar 

  19. Koch C (1998) Intermetallic matrix composites prepared by mechanical alloying—a review. Mater Sci Eng A 244(1):39–48

    Article  Google Scholar 

  20. Doychak J (1992) Metal- and intermetallic-matrix composites for aerospace propulsion and power systems. JOM 44(6):46–51. https://doi.org/10.1007/BF03222256

    Article  CAS  Google Scholar 

  21. Kumar KS, Bao G (1994) Intermetallic-matrix composites: an overview. Compos Sci Technol 52(2):127–150

    Article  CAS  Google Scholar 

  22. Kainuma R, Fujita Y, Mitsui H, Ohnuma I, Ishida K (2000) Phase equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti-Al base ternary alloys. Intermetallics 8(8):855–867

    Article  CAS  Google Scholar 

  23. Tsunekawa Y, Gotoh K, Okumiya M, Mohri N (1992) Synthesis and high-temperature stability of titanium aluminide matrixin situ composites. J Therm Spray Technol 1(3):223–229

    Article  CAS  Google Scholar 

  24. Plucknett KP, Becher PF (2001) Processing and microstructure development of titanium carbide–nickel aluminide composites prepared by melt infiltration/sintering (MIS). J Am Ceram Soc 61:55–61

    Article  Google Scholar 

  25. Plucknett KP, Becher PF, Subramanian R (1997) Melt-infiltration processing of TiC/Ni3Al composites. J Mater Res 12(10):2515–2517

    Article  CAS  Google Scholar 

  26. Stewart TL, Plucknett KP (2014) The sliding wear of TiC and Ti(C, N) cermets prepared with a stoichiometric Ni3Al binder. Wear 318(1–2):153–167

    Article  CAS  Google Scholar 

  27. Sahoo P, Koczak MJ (1991) Microstructure-property relationships of in situ reacted TiC/Al-Cu metal matrix composites. Mater Sci Eng A 131(1):69–76

    Article  Google Scholar 

  28. Ko S-H, Park B-G, Hashimoto H, Abe T, Park Y-H (2002) Effect of MA on microstructure and synthesis path of in situ TiC reinforced Fe–28 at.% Al intermetallic composites. Mater Sci Eng A 329–331:78–83

    Article  Google Scholar 

  29. Krasnowski M, Witek A, Kulik T (2002) The FeAl–30%TiC nanocomposite produced by mechanical alloying and hot-pressing consolidation. Intermetallics 10(4):371–376

    Article  CAS  Google Scholar 

  30. Subramanian R, Schneibel J (1998) FeAl–TiC and FeAl-WC composites—melt infiltration processing, microstructure and mechanical properties. Mater Sci Eng A 244(1):103–112

    Article  Google Scholar 

  31. Subramanian R, Schneibel J (1997) FeAl-TiC cermets—melt infiltration processing and mechanical properties. Mater Sci Eng A 239–240:633–639

    Article  Google Scholar 

  32. Cramer CL, Preston AD, Elliott AM, Lowden RA (2019) Highly dense, inexpensive composites via melt infiltration of Ni into WC/Fe preforms. Int J Refract Met Hard Mater 82:255–258

    Article  CAS  Google Scholar 

  33. Leon CA, Lopez VH, Bedolla E, Drew RAL (2002) Wettability of TiC by commercial aluminum alloys. J Mater Sci 37(16):3509–3514. https://doi.org/10.1023/A:1016523408906

    Article  CAS  Google Scholar 

  34. Agudo L et al (2007) Intermetallic FexAly-phases in a steel/Al-alloy fusion weld. J Mater Sci 42(12):4205–4214. https://doi.org/10.1007/s10853-006-0644-0

    Article  CAS  Google Scholar 

  35. Stein F, Vogel SC, Eumann M, Palm M (2010) Determination of the crystal structure of the ɛ phase in the Fe–Al system by high-temperature neutron diffraction. Intermetallics 18(1):150–156

    Article  CAS  Google Scholar 

  36. Li X, Scherf A, Heilmaier M, Stein F (2016) The Al-Rich part of the Fe–Al phase diagram. J Phase Equilibria Diffus 37(2):162–173

    Article  CAS  Google Scholar 

  37. Bastin GF, van Loo FJJ, Vrolijk JWGA, Wolff LR (1978) Crystallography of aligned Fe–Al eutectoid. J Cryst Growth 43(6):745–751

    Article  CAS  Google Scholar 

  38. Frisk K (2003) A revised thermodynamic description of the Ti-C system. Calphad 27(4):367–373

    Article  CAS  Google Scholar 

  39. Zhang W, Bay N, Wanheim T (1992) Influence of hydrostatic pressure in cold-pressure welding. CIRP Ann 41(1):293–297

    Article  Google Scholar 

  40. Bale CW et al (2002) FactSage thermochemical software and databases. Calphad 26(2):189–228

    Article  CAS  Google Scholar 

  41. Du Y, Schuster JC, Seifert HJ, Aldinger F (2000) Experimental investigation and thermodynamic calculation of the titanium–silicon–carbon system. J Am Ceram Soc 83(1):197–203

    Article  CAS  Google Scholar 

  42. Bandyopadhyay D (2004) The Ti-Si-C system (Titanium-Silicon-Carbon). J Phase Equilibria Diffus 25(5):415–420

    Article  CAS  Google Scholar 

  43. Tsukahara T, Takata N, Kobayash S, Takeyama M (2016) Mechanical properties of Fe2Al5 and FeAl3 intermetallic phases at ambient temperature. Tetsu To Hagane J Iron Steel Inst Jpn 102(2):29–35

    Google Scholar 

  44. Hasemann G, Schneibel JH, Krüger M, George EP (2014) Vacancy strengthening in Fe3Al iron aluminides. Intermetallics 54:95–103

Download references

Acknowledgements

The authors would like to thank Olivia Shafer for assistance in editing. Research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corson L. Cramer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cramer, C.L., Edwards, M.S., McMurray, J.W. et al. Lightweight TiC–(Fe–Al) ceramic–metal composites made in situ by pressureless melt infiltration. J Mater Sci 54, 12573–12581 (2019). https://doi.org/10.1007/s10853-019-03792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03792-2

Navigation