Skip to main content

Advertisement

Log in

Acoustic thermoset open-cell foams produced by particulate leaching process

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The purpose of this paper is to produce acoustic thermoset open-cell foam with both attractive acoustical and mechanical properties using a simple and versatile process. The manufacturing process is based on particulate leaching and is fully controlled to provide predictable foam microstructure. Microscopic and X-ray microtomographic analyses were used to validate the interconnectivity of the porosity as well as the degree of purity of the produced materials. It was shown that the porosity and the thickness depend on the compaction pressure, which is the determinant processing parameter. An optimization model based on the well-known JCAPL model was used to predict the physical properties of the foams microstructure. The acoustical and mechanical properties are shown to be dependent on particle size and compaction pressure. The thermoset foams can be used as effective absorbing acoustic materials with broadband absorption capabilities, combined with compressive modulus as high as 88 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Girvin R (2009) Aircraft noise-abatement and mitigation strategies. J Air Transp Manag 15(1):14–22

    Article  Google Scholar 

  2. Bernhard RJ (1994) The state of the art of active-passive noise control. In: Noise Con 1994: proceedings of the 1994 national conference on noise control engineering

  3. Peake N, Crighton DG (2000) Active control of sound. Annu Rev Fluid Mech 32(1):137–164

    Article  Google Scholar 

  4. Gvozdkova S, Shvartsburg L (2017) Analysis of sources and methods for reducing noise by minimizing vibrations of engineering technological processes. Procedia Eng 206:958–964

    Article  Google Scholar 

  5. Ishizaki K, Komarneni S, Nanko M (2013) Porous materials: process technology and applications, vol 4. Springer, Berlin

    Google Scholar 

  6. Ramsteiner F, Fell N, Forster S (2001) Testing the deformation behaviour of polymer foams. Polym Test 20(6):661–670

    Article  CAS  Google Scholar 

  7. Lee W (2000) Cellular solids, structure and properties. Mater Sci Technol 16(2):233

    CAS  Google Scholar 

  8. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46(6):559–632

    Article  CAS  Google Scholar 

  9. Tarnow V (1996) Airflow resistivity of models of fibrous acoustic materials. J Acoust Soc Am 100(6):3706–3713

    Article  Google Scholar 

  10. Perrot C, Chevillotte F, Panneton R (2008) Dynamic viscous permeability of an open-cell aluminum foam: computations versus experiments. J Appl Phys 103(2):024909

    Article  Google Scholar 

  11. Olny X, Boutin C (2003) Acoustic wave propagation in double porosity media. J Acoust Soc Am 114(1):73–89

    Article  Google Scholar 

  12. Chevillotte F, Perrot C, Guillon E (2013) A direct link between microstructure and acoustical macro-behavior of real double porosity foams. J Acoust Soc Am 134(6):4681–4690

    Article  Google Scholar 

  13. Ghaffari Mosanenzadeh S, Doutres O, Naguib HE, Park CB, Atalla N (2015) A semi-empirical model relating micro structure to acoustic properties of bimodal porous material. J Appl Phys 117(3):034305

    Article  Google Scholar 

  14. Attenborough K (2018) Microstructures for lowering the quarter wavelength resonance frequency of a hard-backed rigid-porous layer. Appl Acoust 130:188–194

    Article  Google Scholar 

  15. Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng, C 48:586–591

    Article  CAS  Google Scholar 

  16. Rezabeigi E, Wood-Adams PM, Drew RA (2014) Production of porous polylactic acid monoliths via nonsolvent induced phase separation. Polymer 55(26):6743–6753

    Article  CAS  Google Scholar 

  17. Aubert J, Clough R (1985) Low-density, microcellular polystyrene foams. Polymer 26(13):2047–2054

    Article  CAS  Google Scholar 

  18. Dehghani F, Annabi N (2011) Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 22(5):661–666

    Article  CAS  Google Scholar 

  19. Draghi L, Resta S, Pirozzolo M, Tanzi M (2005) Microspheres leaching for scaffold porosity control. J Mater Sci Mater Med 16(12):1093–1097. https://doi.org/10.1007/s10856-005-4711-x

    Article  CAS  Google Scholar 

  20. Zhou Q, Gong Y, Gao C (2005) Microstructure and mechanical properties of poly (L-lactide) scaffolds fabricated by gelatin particle leaching method. J Appl Polym Sci 98(3):1373–1379

    Article  CAS  Google Scholar 

  21. Sin D, Miao X, Liu G, Wei F, Chadwick G, Yan C, Friis T (2010) Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater Sci Eng, C 30(1):78–85

    Article  CAS  Google Scholar 

  22. Hou Q, Grijpma DW, Feijen J (2003) Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 24(11):1937–1947

    Article  CAS  Google Scholar 

  23. Ghaffari Mosanenzadeh S, Naguib HE, Park CB, Atalla N (2013) Development, characterization, and modeling of environmentally friendly open-cell acoustic foams. Polym Eng Sci 53(9):1979–1989

    Article  Google Scholar 

  24. Zhao P, Zhou Q, Deng YY, Zhu RQ, Gu Y (2014) Reaction induced phase separation in thermosetting/thermosetting blends: effects of imidazole content on the phase separation of benzoxazine/epoxy blends. RSC Adv 4(106):61634–61642

    Article  CAS  Google Scholar 

  25. Patel H, Bonde M, Srinivasan G (2011) Biodegradable polymer scaffold for tissue engineering. Trends Biomater Artif Organs 25(1):20–29

    Google Scholar 

  26. Hung KC, Tseng CS, Hsu Sh (2014) Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications. Adv Healthc Mater 3(10):1578–1587

    Article  CAS  Google Scholar 

  27. Yeong W-Y, Chua C-K, Leong K-F, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  CAS  Google Scholar 

  28. Fotsing ER, Dubourg A, Ross A, Mardjono J (2019) Acoustic properties of periodic microstructures obtained by additive manufacturing. Appl Acoust 148:322–331

    Article  Google Scholar 

  29. De Vries D (2009) Characterization of polymeric foams. Eindhoven University of Technology

  30. Marmottant A, Salvo L, Martin C, Mortensen A (2008) Coordination measurements in compacted NaCl irregular powders using X-ray microtomography. J Eur Ceram Soc 28(13):2441–2449

    Article  CAS  Google Scholar 

  31. Allard J, Atalla N (2009) Propagation of Sound in porous media: modelling sound absorbing materials 2e. Wiley, London

    Book  Google Scholar 

  32. Niskanen M, Groby J-P, Duclos A, Dazel O, Le Roux J, Poulain N, Huttunen T, Lähivaara T (2017) Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements. J Acoust Soc Am 142(4):2407–2418

    Article  CAS  Google Scholar 

  33. Lavakumar A (2017) Concepts in physical metallurgy. Morgan & Claypool Publishers

  34. Jaouen L, Brouard B, Atalla N, Langlois C (2005) A simplified numerical model for a plate backed by a thin foam layer in the low frequency range. J Sound Vib 280(3–5):681–698

    Article  Google Scholar 

  35. Panneton R, Atalla N (1996) Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials. J Acoust Soc Am 100(1):346–354

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding and supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Roland Fotsing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, S., Fotsing, E.R. & Ross, A. Acoustic thermoset open-cell foams produced by particulate leaching process. J Mater Sci 54, 12553–12572 (2019). https://doi.org/10.1007/s10853-019-03790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03790-4

Navigation