Skip to main content

Advertisement

Log in

A high-strength heterogeneous structural dual-phase steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The strengthening and ductilization of steels are of great importance to weight reduction of vehicles. In this work, the strength–ductility synergy of dual-phase (DP) steels was obtained by properly tailoring the structural heterogeneity, including the distribution and fraction of constituent phases. It was demonstrated that heterogeneous structural DP steels with high volume fraction of martensite (from 64 to 83%) led to a good combination of strength and ductility. Compared with the cold-rolled sheets, the tensile strength and uniform elongation of heterogeneous DP steel increased by 700 MPa (from 1.06 to 1.76 GPa) and 2.7% (from 1.3 to 4%), respectively. The contributions from back stress and effective stress were analyzed by cyclic loading–unloading experiments. The underlying deformation mechanism was discussed based on the results of mechanical test and microstructure observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kuziak R, Kawalla R, Waengler S (2008) Advanced high strength steels for automotive industry. Arch Civ Mech Eng 8:103–117

    Article  Google Scholar 

  2. Olsson K, Sperle JO (2006) New advanced ultra-high strength steels for the automotive industry. Autotechnology 6:46–49

    Google Scholar 

  3. Bouaziz O, Zurob H, Huang MX (2013) Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res Int 84:937–947

    CAS  Google Scholar 

  4. Lu K (2014) Making strong nanomaterials ductile with gradients. Science 345:1455

    Article  CAS  Google Scholar 

  5. Wang YM, Chen MW, Zhou FH, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915

    Article  CAS  Google Scholar 

  6. Jamei F, Mirzadeh H, Zamani M (2019) Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater Sci Eng A 750:125–131

    Article  CAS  Google Scholar 

  7. Nikkhah S, Mirzadeh H, Zamani M (2019) Improved mechanical properties of mild steel via combination of deformation, intercritical annealing, and quench aging. Mater Sci Eng A 756:268–271

    Article  CAS  Google Scholar 

  8. Zamani M, MirzadehH Maleki M (2018) Enhancement of mechanical properties of low carbon dual phase steel via natural aging. Mater Sci Eng A 734:178–183

    Article  CAS  Google Scholar 

  9. Wu XL, Yang MX, Yuan FP, Wu GL, Wei YJ, Huang XX, Zhu YT (2015) Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA 112:14501–14505

    Article  CAS  Google Scholar 

  10. Wu XL, Yuan FP, Yang MX, Jiang P, Zhang CX, Chen L, Wei YG, Ma E (2015) Nanodomained nickel unite nanocrystal strength with coarse-grain ductility. Sci Rep 5:11728

    Article  Google Scholar 

  11. Wu XL, Zhu YT (2017) Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Mater Res Lett 5:527–532

    Article  CAS  Google Scholar 

  12. Zhou H, Huang CX, Sha XC, Xiao LR, Ma XL, Höppel HW, Göken M, Wu XL, Ameyama K, Han XD, Zhu YT (2019) In-situ observation of dislocation dynamics near heterostructured interfaces. Mater Res Lett 7:376–382

    Article  CAS  Google Scholar 

  13. Li JS, Cao Y, Gao B, Li YS, Zhu YT (2018) Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. J Mater Sci 53:10442–10456. https://doi.org/10.1007/s10853-018-2322-4

    Article  CAS  Google Scholar 

  14. Wu XL, Yang MX, Yuan FP, Chen L, Zhu YT (2016) Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Mater 112:337–346

    Article  CAS  Google Scholar 

  15. Raeisinia B, Sinclair CW, Poole WJ, Tomé CN (2008) On the impact of grain size distribution on the plastic behaviour of polycrystalline metals. Model Simul Mater Sci Eng 16:025001

    Article  Google Scholar 

  16. Ma XL, Huang CX, Moering J, Ruppert M, Höppel HW, Göken M, Narayan J, Zhu YT (2016) Mechanical properties of copper/bronze laminates: role of interfaces. Acta Mater 116:43–52

    Article  CAS  Google Scholar 

  17. Cao Y, Wang YB, An XH, Liao XZ, Kawasaki M, Ringer SP, Langdon TG, Zhu YT (2014) Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion. Acta Mater 63:16–29

    Article  CAS  Google Scholar 

  18. Cao Y, Wang YB, Alhajeri SN, Liao XZ, Zheng WL, Ringer SP, Langdon TG, Zhu YT (2010) A visualization of shear strain in processing by high-pressure torsion. J Mater Sci 45:765–770. https://doi.org/10.1007/s10853-009-3998-2

    Article  CAS  Google Scholar 

  19. Pan ZY, Gao B, Lai QQ, Chen XF, Cao Y, Liu MP, Zhou H (2018) Microstructure and mechanical properties of a cold-rolled ultrafine-grained dual-phase steel. Materials 11:1399

    Article  Google Scholar 

  20. Alibeyki M, Mirzadeh H, Najafi M, Kalhor A (2017) Modification of rule of mixtures for estimation of the mechanical properties of dual-phase steels. J Mater Eng Perform 26:2683–2688

    Article  CAS  Google Scholar 

  21. Kalhor A, Mirzadeh H (2017) Tailoring the microstructure and mechanical properties of dual phase steel based on the initial microstructure. Steel Res Int 88:1600385

    Article  Google Scholar 

  22. Nakada N, Arakawa Y, Park KS, Tsuchiyama T, Takaki S (2012) Dual phase structure formed by partial reversion of cold-deformed martensite. Mater Sci Eng A 553:128–133

    Article  CAS  Google Scholar 

  23. Erdogan M (2002) The effect of new ferrite content on the tensile fracture behaviour of dual phase steels. J Mater Sci 37:3623–3630. https://doi.org/10.1023/A:1016548922555

    Article  CAS  Google Scholar 

  24. Ahmad E, Sarwar M, Manzoor T, Hussain N (2006) Effect of rolling and epitaxial ferrite on the tensile properties of low alloy steel. J Mater Sci 41:5417–5423. https://doi.org/10.1007/s10853-006-0266-6

    Article  CAS  Google Scholar 

  25. Lai QQ, Brassart L, Bouaziz O, Gouné M, Verdier M, Parry G, Perlade A, Bréchet Y, Pardoen T (2016) Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: experiments and micromechanical modeling. Int J Plast 80:187–203

    Article  CAS  Google Scholar 

  26. Kalashami AG, Kermanpur A, Ghassemali E, Najafizadeh A, Mazaheri Y (2017) The effect of Nb on texture evolutions of the ultrafine-grained dual-phase steels fabricated by cold rolling and intercritical annealing. J Alloys Compd 694:1026–1035

    Article  Google Scholar 

  27. Salehi AR, Serajzadeh S, Taheri AK (2006) A study on the microstructural changes in hot rolling of dual-phase steels. J Mater Sci 41:1917–1925. https://doi.org/10.1007/s10853-006-4486-6

    Article  CAS  Google Scholar 

  28. Barbier D, Germain L, Hazotte A, Gouné M, Chbihi A (2014) Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steel. J Mater Sci 50:374–381. https://doi.org/10.1007/s10853-014-8596-2

    Article  CAS  Google Scholar 

  29. Peranio N, Li YJ, Roters F, Raabe D (2010) Microstructure and texture evolution in dual-phase steels: competition between recovery, recrystallization, and phase transformation. Mater Sci Eng A 527:4161–4168

    Article  Google Scholar 

  30. Zheng CW, Raabe D (2013) Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model. Acta Mater 61:5504–5517

    Article  CAS  Google Scholar 

  31. Nouroozi M, Mirzadeh H, Zamani M (2018) Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel. Mater Sci Eng A 736:22–26

    Article  CAS  Google Scholar 

  32. Mirzadeh H, Alibeyki M, Najafi M (2017) Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual-phase steel. Metall Mater Trans A 48:4565–4573

    Article  CAS  Google Scholar 

  33. Son Y, Lee YK, Park K-T, Lee CS, Shin DH (2005) Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater 53:3125–3134

    Article  CAS  Google Scholar 

  34. Kyung-Tae P, Kook L, Hyuk S (2005) Fabrication of ultrafine grained ferrite/martensite dual phase steel by severe plastic deformation. ISIJ Int 45:750–755

    Article  Google Scholar 

  35. Lai QQ, Gouné M, Perlade A, Pardoen T, Jacques P, Bouaziz O, Bréchet Y (2016) Mechanism of austenite formation from spheroidized microstructure in an intermediate Fe–0.1C–3.5Mn steel. Metall Mater Trans A 47:3375–3386

    Article  CAS  Google Scholar 

  36. Sharma S, Nanda T, Adhikary M, Venugopalan T, Ravi Kumar B (2016) A simulation study of pearlite-to-austenite transformation kinetics in rapidly heated hot-rolled low carbon steel. Mater Des 107:65–73

    Article  CAS  Google Scholar 

  37. Ashrafi H, Shamanian M, Emadi R, Saeidi N (2017) Correlation of tensile properties and strain hardening behavior with martensite volume fraction in dual-phase steels. Trans Indian Inst Met 70:1575–1584

    Article  CAS  Google Scholar 

  38. Zhao ZZ, Tong TT, Liang JH, Yin HX, Zhao AM, Tang D (2014) Microstructure, mechanical properties and fracture behavior of ultra-high strength dual-phase steel. Mater Sci Eng A 618:182–188

    Article  CAS  Google Scholar 

  39. Davies RG (1979) Early stages of yielding and strain aging of a vanadium-containing dual-phase steel. Metall Trans A 10:1549–1555

    Article  Google Scholar 

  40. Cao Y, Ni S, Liao XZ, Song M, Zhu YT (2018) Structural evolutions of metallic materials processed by severe plastic deformation. Mater Sci Eng R 133:1–59

    Article  Google Scholar 

  41. Lai QQ, Sinclair CW, Poole WJ (2018) The anisotropic kinetics of strain aging in a martensitic steel. Can Metall Q 57:20–27

    Article  CAS  Google Scholar 

  42. Allain S, Bouaziz O, Takahashi M (2012) Toward a new interpretation of the mechanical behaviour of as-quenched low alloyed martensitic steels. ISIJ Int 52:717–722

    Article  CAS  Google Scholar 

  43. Kalashami AG, Kermanpur A, Najafizadeh A, Mazaheri Y (2016) Development of a high strength and ductile Nb-bearing dual phase steel by cold-rolling and intercritical annealing of the ferrite-martensite microstructures. Mater Sci Eng A 658:355–366

    Article  CAS  Google Scholar 

  44. Etesami SA, Enayati MH, Kalashami AG (2017) Austenite formation and mechanical properties of a cold rolled ferrite-martensite structure during intercritical annealing. Mater Sci Eng A 682:296–303

    Article  CAS  Google Scholar 

  45. Park KT, Han SY, Ahn BD, Shin DH, Lee YK, Um KK (2004) Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing. Scr Mater 51:909–913

    Article  CAS  Google Scholar 

  46. Das D, Chattopadhyay P (2009) Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J Mater Sci 44:2957–2965. https://doi.org/10.1007/s10853-009-3392-0

    Article  CAS  Google Scholar 

  47. Calcagnotto M, Ponge D, Raabe D (2010) Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels. Mater Sci Eng A 527:7832–7840

    Article  Google Scholar 

  48. Calcagnotto M, Adachi Y, Ponge D, Raabe D (2011) Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater 59:658–670

    Article  CAS  Google Scholar 

  49. Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 527:2738–2746

    Article  Google Scholar 

  50. Hamid A, Militzer M, Poole W (2011) Formation of ultrafine grained dual phase steels through rapid heating. ISIJ Int 51:958–964

    Article  Google Scholar 

  51. Papa Rao M, Subramanya Sarma V, Sankaran S (2017) Microstructure and mechanical properties of V–Nb microalloyed ultrafine-grained dual-phase steels processed through severe cold rolling and intercritical annealing. Metall Mater Trans A 48:1176–1188

    Article  CAS  Google Scholar 

  52. Papa Rao M, Subramanya Sarma V, Sankaran S (2013) Development of high strength and ductile ultra fine grained dual phase steel with nano sized carbide precipitates in a V–Nb microalloyed steel. Mater Sci Eng A 568:171–175

    Article  Google Scholar 

  53. Saeidi N, Ashrafizadeh F, Niroumand B (2014) Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior. Mater Sci Eng A 599:145–149

    Article  CAS  Google Scholar 

  54. Sun JJ, Jiang T, Sun Y, Wang YJ, Liu YN (2017) A lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlement. J Alloys Compd 698:390–399

    Article  CAS  Google Scholar 

  55. Yang MX, Yuan FP, Xie QG, Wang YD, Ma E, Wu XL (2016) Strain hardening in Fe–16Mn–10Al–0.86C–5Ni high specific strength steel. Acta Mater 109:213–222

    Article  CAS  Google Scholar 

  56. Ma Y, Yang MX, Jiang P, Yuan FP, Wu XL (2017) Plastic deformation mechanisms in a severely deformed Fe–Ni–Al–C alloy with superior tensile properties. Sci Rep 7:15619

    Article  Google Scholar 

  57. Yang MX, Pan Y, Yuan FP, Zhu YT, Wu XL (2016) Back stress strengthening and strain hardening in gradient structure. Mater Res Lett 4:145–151

    Article  CAS  Google Scholar 

  58. Pierman AP, Bouaziz O, Pardoen T, Jacques PJ, Brassart L (2014) The influence of microstructure and composition on the plastic behavior of dual-phase steels. Acta Mater 73:298–311

    Article  CAS  Google Scholar 

  59. Kadkhodapour J, Schmauder S, Raabe D, Ziaei-Rad S, Weber U, Calcagnotto M (2011) Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater 59:4387–4394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (Grant Number 2017YFA0204403), the National Natural Science Foundation of China (Grant Numbers 51601094 and 51601003) and the Fundamental Research Funds for the Central Universities (Grant Number 30918011342). Q.L. thanks Fundamental Research Funds for the Central Universities (Grant Number 30917011106) for the financial support. The authors thank the Materials Characterization and Research Center of Nanjing University of Science and Technology and the Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology for the support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingquan Lai or Lirong Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Chen, X., Pan, Z. et al. A high-strength heterogeneous structural dual-phase steel. J Mater Sci 54, 12898–12910 (2019). https://doi.org/10.1007/s10853-019-03785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03785-1

Navigation