Skip to main content
Log in

Analysis on the electronic trap of β-Ga2O3 single crystal

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy and Raman spectroscopy were applied to study β-Ga2O3 single crystals before and after annealing. By systematic analysis, the mechanism of the carrier concentration decrease after annealing was explained using electronic trap of Ga 3+I . XPS measurements showed that the O content increases while the Ga3+ content decreases after annealing, which is related to the carrier concentration decrease. The shift of blue emission band center which related to donors was attributed to the electron capture by Ga3+ nearby conduction band. The Raman spectra confirmed this capture, as based on the Raman peak intensity changes, and the electrons were judged to be mainly captured by GaI of β-Ga2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D, Bickermann M (2014) On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth 404:184–191

    Article  Google Scholar 

  2. Aida H, Nishiguchi K, Takeda H, Aota N, Sunakawa K, Yaguchi Y (2008) Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys 47(11):8506–8509

    Article  Google Scholar 

  3. Hu ZZ, Zhou H, Feng Q, Zhang JC, Zhang CF, Dang K, Cai YC, Feng ZQ, Gao YY, Kang XW, Hao Y, Kang X, Hao Y (2018) Field-plated lateral β-Ga2O3 schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett 39(10):1564–1567

    Article  Google Scholar 

  4. Ke Z, Abhishek V, Uttam S (2018) 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett 39(5):1385–1388

    Google Scholar 

  5. Yamaguchi K (2004) First principles study on electronic structure of β-Ga2O3. Solid State Commun 131:739–744

    Article  Google Scholar 

  6. Feng ZQ, Huang L, Feng Q, Li X, Zhang H, Tang WH, Zhang JC, Hao Y (2018) Influence of annealing atmosphere on the performance of a β-Ga2O3 thin film and photodetector. Opt Mater Express 8(8):2229–2237

    Article  Google Scholar 

  7. Heinemann MD, Berry J, Teeter G, Unold T, Ginley D (2016) Oxygen deficiency and Sn doping of amorphous Ga2O3. Appl Phys Lett 108:022107

    Article  Google Scholar 

  8. Son NT, Goto K, Nomura K, Thieu QT, Togashi R, Murakami H, Kumagai Y, Kuramata A, Higashiwaki M, Koukitu A, Yamakoshi S, Monemar B, Janzén E (2016) Electronic properties of the residual donor in unintentionally doped β−Ga2O3. J Appl Phys 120:235703

    Article  Google Scholar 

  9. Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M, Fornari R (2014) Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth 401:665–669

    Article  Google Scholar 

  10. Víllora EG, Shimamura K, Yoshikawa Y, Ujiie T, Aoki K (2008) Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl Phys Lett 92:202120

    Article  Google Scholar 

  11. Varley JB, Weber JR, Janotti A, Van de Walle CG (2010) Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett 97:142106

    Article  Google Scholar 

  12. Verley JB, Janotti A, Franchini C, Van de Walle CG (2012) Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys Rev B 85(8):081109

    Article  Google Scholar 

  13. Shi Q, Wang QR, Zhang D, Wang QL, Li SH, Wang WJ, Fan QL, Zhang JY (2019) Structural, optical and photoluminescence properties of Ga2O3 thin films deposited by vacuum thermal evaporation. J Lumin 206:53–58

    Article  Google Scholar 

  14. Rao R, Rao AM, Xu B, Dong J, Sharma S, Sunkara MK (2005) Blueshifted Raman scattering and its correlation with the [110] growth direction in gallium oxide nanowires. J Appl Phys 98(5):094312

    Article  Google Scholar 

  15. Tak BR, Dewanb S, Goyalc A, Pathaka R, Guptab V, Kapoorc AK, Nagarajand S, Singha R (2019) Point defects induced work function modulation of β-Ga2O3. Appl Surf Sci 465:973–978

    Article  Google Scholar 

  16. Atuchin VV, Pokrovsky LD, Khyzhun OYu, Sinelnichenko AK, Ramana CV (2008) Surface crystallography and electronic structure of potassium yttrium tungstate. J Appl Phys 104:033518

    Article  Google Scholar 

  17. Atuchin VV, Kalabin IE, Kesler VG, Pervukhina NV (2005) Nb 3d and O 1s core levels and chemical bonding in niobates. J Electron Spectrosc Relat Phenom 142:129–134

    Article  Google Scholar 

  18. Atuchin VV, Kesler VG, Pervukhina NV, Zhang ZM (2006) Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J Electron Spectrosc Relat Phenom 152:18–24

    Article  Google Scholar 

  19. Atuchin VV, Aleksandrovsky AS, Chimitova OD, Diao CP, Gavrilova TA, Kesler VG, Molokeev MS, Krylov AS, Bazarov BG, Bazarova JG, Lin ZS (2015) Electronic structure of β-RbSm(MoO4)2 and chemical bonding in molybdates. Dalton Trans 44:1805–1815

    Article  Google Scholar 

  20. Atuchin VV, Isaenko LI, Kesler VG, Kang L, Lin Z, Molokeev MS, Yelisseyev AP, Zhurkov SA (2013) Structural, spectroscopic, and electronic properties of cubic G0-Rb2KTiOF5 oxyfluoride. J Phys Chem C 117:7269–7278

    Article  Google Scholar 

  21. Galazka Z, Uecker R, Irmscher K, Albrecht M, Klimm D, Pietsch M, Brützam M, Bertram R, Ganschow S, Fornari R (2010) Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst Res Technol 45(12):1229–1236

    Article  Google Scholar 

  22. Zade V, Mallesham B, Roy S, Shutthanandan V, Ramana CV (2019) Electronic structure of tungsten-doped β-Ga2O3 compounds. ECS J Solid State Sci 8(7):Q3111–Q3115

    Article  Google Scholar 

  23. Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T, Honda T (2013) Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett 103(4):041910

    Article  Google Scholar 

  24. Xiao WZ, Wang LL, Xu L, Wan Q, Zou BS (2009) Electronic structure and magnetic interactions in Ni-doped β-Ga2O3 from first-principles calculations. Scripta Mater 61(5):477–480

    Article  Google Scholar 

  25. Galván C, Galván MC, Arias-Cerón JS, López-Luna E, Vilchis H, Sánchez-R VM (2016) Structural and Raman studies of Ga2O3 obtained on GaAs substrate. Mater Sci Semicond Process 41:513–518

    Article  Google Scholar 

  26. Onuma T, Fujioka S, Yamaguchi T, Itoh Y, Higashiwaki M, Sasaki K, Masui T, Honda T (2014) Polarized Raman spectra in β-Ga2O3 single crystals. J Cryst Growth 401:330–333

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51802327 and 11535010) and the Science and Technology Commission of Shanghai Municipality (No. 18511110500). The authors are grateful to Xiaowei Yu and Shiyu Sun for their help on measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Sai or Jingtai Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Sai, Q., Qi, H. et al. Analysis on the electronic trap of β-Ga2O3 single crystal. J Mater Sci 54, 12643–12649 (2019). https://doi.org/10.1007/s10853-019-03777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03777-1

Navigation