Skip to main content
Log in

Stable polymer/inorganic composite multilayers using covalent cross-linking assisted by a magnetic field

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, stable composite multilayers incorporating magnetic montmorillonite (MMT) and weak polyelectrolyte were prepared under the assistance of a magnetic field. We reported a facile method for fabrication of covalently cross-linked Layer-by-Layer (LbL) multilayers using a photosensitive cross-linking agent 4,4′-diazostilbene-2,2′-disulfonic acid disodium salt that carried double azido groups. The multilayers after cross-linking presented improved stability against extreme solution conditions (basic solution pH = 14), and over 78.15% of magnetic MMT remained on the substrate, in clear contrast with the non-cross-linked multilayers, for which less than 8% of the magnetic MMT remained. The results of UV–Vis spectroscopy and scanning electron microscopy (SEM) measurements supported the improvement in the stability of the multilayers. Moreover, the assistance of the external magnetic field improved the LbL assembly efficiency and the cross-linking step achieved the molecular retarded release. When gauze was used as the substrate, the mass loading under the magnetic field was approximately 0.976 mg/cm2, which was 4.2 times the amount deposited on gauze without an external magnetic field. After interfacial modification of gauze using LbL multilayers, the static contact angle transformed from hydrophobic (111.25°) to perfect hydrophilic. When we employed aspirin as the target drug, it took 23 h for the cross-linked multilayers to achieve saturated release, as opposed to 9 h for the non-cross-linked multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Cheng ZL, Zaki AA, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338(6109):903–910

    Article  CAS  Google Scholar 

  2. Datta KKR, Achari A, Eswaramoorthy M (2013) Aminoclay: a functional layered material with multifaceted applications. J Mater Chem A 1(23):6707–6718

    Article  CAS  Google Scholar 

  3. Choy JH, Choi SJ, Oh JM, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36(1–3):122–132

    Article  CAS  Google Scholar 

  4. Lohse SE, Murphy CJ (2012) Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 134(38):15607–15620

    Article  CAS  Google Scholar 

  5. An Q, Huang T, Shi F (2018) Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications. Chem Soc Rev 47(13):5061–5098

    Article  CAS  Google Scholar 

  6. Cheng MJ, Shi F, Li JS, Lin ZF, Jiang C, Xiao M, Zhang LQ, Yang WT, Nishi T (2014) Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. Adv Mater 26(19):2009–2013

    Article  Google Scholar 

  7. Cheng MJ, Liu Q, Xian YM, Shi F (2014) Programmable macroscopic supramolecular assembly through combined molecular recognition and magnetic field-assisted localization. ACS Appl Mater Interfaces 6(10):7572–7578

    Article  CAS  Google Scholar 

  8. Zhou Y, Cheng MJ, Zhu XQ, Zhang YJ, An Q, Shi F (2013) A facile method to prepare molecularly imprinted layer-by-layer nanostructured multilayers using postinfiltration and a subse-quent photo-cross-linking strategy. ACS Appl Mater Interfaces 5(17):8308–8313

    Article  CAS  Google Scholar 

  9. Liu ZC, Yan ZD, Bai L (2016) Layer-by-layer assembly of polyelectrolyte and gold nanoparticle for highly reproducible and stable SERS substrate. Appl Surf Sci 360:437–441

    Article  CAS  Google Scholar 

  10. Ma L, Cheng C, He C, Nie CX, Deng J, Sun SD, Zhao CS (2015) Substrate-independent robust and heparin-mimetic hydrogel thin film coating via combined LbL self-assembly and mussel-inspired post-cross-linking. ACS Appl Mater Interfaces 7(47):26050–26062

    Article  CAS  Google Scholar 

  11. Correa S, Choi KY, Dreaden EC, Renggli K, Shi A, Gu L, Shopsowitz KE, Quadir MA, Ben-Akiva E, Hammond PT (2016) Highly scalable, closed-loop synthesis of drug-loaded, layer-by-layer nanoparticles. Adv Funct Mater 26(7):991–1003

    Article  CAS  Google Scholar 

  12. Rajesh S, Zhao Y, Fong H, Menkhaus TJ (2016) Polyacrylonitrile nanofiber membranes modified with ionically crosslinked polyelectrolyte multilayers for the separation of ionic impurities. Nanoscale 8(43):18376–18389

    Article  CAS  Google Scholar 

  13. Niu J, Liu Z, Fu L, Shi F, Ma H, Ozaki Y, Zhang X (2008) Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives. Langmuir 24(20):11988–11994

    Article  CAS  Google Scholar 

  14. Zhang J, Liu Y, Wu G, Schoenhoff M, Zhang X (2011) Bolaform supramolecular amphiphiles as a novel concept for the buildup of surface-imprinted films. Langmuir 27(17):10370–10375

    Article  CAS  Google Scholar 

  15. Manju S, Sreenivasan K (2011) Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conjugates: blood compatibility evaluation and targeted drug delivery in cancer cells. Langmuir 27(23):14489–14496

    Article  CAS  Google Scholar 

  16. Dey S, Mohanta K, Pal AJ (2010) Magnetic-field-assisted layer-by-layer electrostatic assembly of ferromagnetic nanoparticles. Langmuir 26(12):9627–9631

    Article  CAS  Google Scholar 

  17. Ariga K, Hill JP, Ji QM (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340

    Article  CAS  Google Scholar 

  18. Li Y, Wang X, Sun JQ (2012) Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem Soc Rev 41(18):5998–6009

    Article  CAS  Google Scholar 

  19. Svagan AJ, Åkesson A, Cárdenas M, Bulut S, Knudsen JC, Risbo J, Plackett D (2012) Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromol 13(2):397–405

    Article  CAS  Google Scholar 

  20. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2013) Polyallylaminee-montmorillonite as super fame retardant coating assemblies by layer-by-layer deposition on polyamide. Polym Degrad Stab 98(2):627–634

    Article  CAS  Google Scholar 

  21. Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4(3):1643–1649

    Article  CAS  Google Scholar 

  22. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu JD, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847):80–83

    Article  CAS  Google Scholar 

  23. Zhu J, Liu XL, Geier ML, McMorrow JJ, Jariwala D, Beck ME, Huang W, Marks TJ, Hersam MC (2016) Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv Mater 28(1):63–68

    Article  CAS  Google Scholar 

  24. Barros A, Ferreira M, Constantino CLJ, Ferreira M (2014) Nanocomposites based on LbL films of polyaniline and sodium montmorillonite clay. Synth Met 197:19–125

    Article  Google Scholar 

  25. de Barros A, Constantino CLJ, Cruz NC, Bortoleto JRR, Ferreira M (2017) High performance of electrochemical sensors based on LbL films of gold nanoparticles, polyaniline and sodium montmorillonite clay mineral for simultaneous detection of metal ions. Electrochim Acta 235:700–708

    Article  Google Scholar 

  26. Kim SJ, Kim TY, Kang BH, Lee GH, Ju BK (2018) Fabrication of graphene oxide/montmorillonite nanocomposite flexible thin films with improved gas-barrier properties. RSC Adv 8:39083–39089

    Article  CAS  Google Scholar 

  27. Shao MF, Xu XY, Han JB, Zhao JW, Shi WY, Kong XG, Wei M, Evans DG, Duan X (2011) Magnetic-field-assisted assembly of layered double hydroxide/metal prphyrin utrathin flms and their application for glucose sensors. Langmuir 27(13):8233–8240

    Article  CAS  Google Scholar 

  28. Shao MF, Wei M, Evans DG, Duan X (2011) Magnetic-field-assisted assembly of CoFe layered double hydroxide ultrathin films with enhanced electrochemical behavior and magnetic anisotropy. Chem Commun 47(11):3171–3173

    Article  CAS  Google Scholar 

  29. Xu ZX, Lv FZ, Zhang YH, Fu LL (2013) Synthesis and characterization of CPC modified magnetic MMT capable of using as anisotropic nanoparticles. Chem Eng J 215:755–762

    Article  Google Scholar 

  30. Xu LN, Lv FZ, Zhang YH, Luan XL, Zhang Q, An Q (2014) Interfacial modification of magnetic montmorillonite (MMT) using covalently assembled LbL Multilayers. J Phys Chem C 118(35):20357–20362

    Article  CAS  Google Scholar 

  31. Bera AA, Dey S, Pal AJ (2013) Magnetic moment assisted layer-by-layer film formation of a prussian blue analog. Langmuir 29(7):2159–2165

    Article  CAS  Google Scholar 

  32. Zhang XS, Jiang C, Cheng MJ, Zhou Y, Zhu XQ, Nie J, Zhang YJ, An Q, Shi F (2012) Facile Method for the fabrication of robust polyelectrolyte multilayers by post-photo-cross-linking of azido groups. Langmuir 28(18):7096–7100

    Article  CAS  Google Scholar 

  33. Wu GL, Shi F, Wang ZQ, Liu Z, Zhang X (2009) Poly(acrylic acid)-bearing photoreactive azido groups for stabilizing multilayer films. Langmuir 25(5):2949–2955

    Article  CAS  Google Scholar 

  34. An Q, Zhou Y, Zhang YJ, Zhang YH, Shi F (2014) A facile method for the fabrication of covalently linked PAH/PSS layer-by-layer films. RSC Advances 4(11):5683–5688

    Article  CAS  Google Scholar 

  35. Fan LH, Luo YL, Chen YS, Zhang CH, Wei QB (2009) Preparation and characterization of Fe3O4 magnetic composite microspheres covered by a P(MAH-co-MAA) copolymer. J Nanopart Res 11(2):449–458

    Article  CAS  Google Scholar 

  36. Wang L, Wang X, Xu MF, Chen DD, Sun JQ (2008) Layer-by-layer assembled microgel films with high loading capacity: reversible loading and release of dyes and nanoparticles. Langmuir 24(5):1902–1909

    Article  CAS  Google Scholar 

  37. Huang YH, Lu J, Xiao CB (2007) Thermal and mechanical properties of cationic guargum/poly(acrylic acid) hydrogel membranes. Polym Degrad Stab 92(6):1072–1081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of North China Institute of Aerospace Engineering Youth Foundation (No. KY-2016-20), Science and Technology Support Program of Langfang (No. 2017011065), and Science and Technology Support Program of Hebei Province of China (No. 18271410).

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Linan Xu or Qi An.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Feng, L., Li, X. et al. Stable polymer/inorganic composite multilayers using covalent cross-linking assisted by a magnetic field. J Mater Sci 54, 11848–11857 (2019). https://doi.org/10.1007/s10853-019-03767-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03767-3