Advertisement

Journal of Materials Science

, Volume 54, Issue 18, pp 11983–11990 | Cite as

Bifunctional interlayer for capturing polysulfide in Li–S battery

  • Pengyu Li
  • Jianna Deng
  • Jing LiEmail author
  • Jianqiang Guo
  • Min Zeng
  • Lige Wang
  • Rui Wang
  • Manqin Tang
Energy materials
  • 87 Downloads

Abstract

Bifunctional interlayer prepared by the polypyrrole-coated vapor-grown carbon fiber was proposed for efficiently capturing polysulfide in Li–S battery (VGPY). The as-prepared bifunctional VGPY interlayer not only can physically adsorb the polysulfide but also can reduce the polarization of the sulfur cathode. The Li–S battery used bifunctional VGPY interlayer shows the first discharge capacity of 1204.51 mAh g−1 at 0.1 C, which is 426.56 mAh g−1 high than that without the interlayer, and the Li–S batteries capacity maintained at 1262.56 mAh g−1 at the current density of 0.1 C and 853.71 mAh g−1 at 0.5 C, respectively, after 300 cycles, demonstrating excellent cycle stability.

Notes

Acknowledgements

This work was supported by National Key Research and Development Program of China (2018YFB0104204).

Supplementary material

10853_2019_3755_MOESM1_ESM.docx (130 kb)
Supplementary material 1 (DOCX 129 kb)

References

  1. 1.
    Luo L, Chung S-H, Manthiram A (2018) A three-dimensional self-assembled SnS 2-nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries. J Mater Chem A 6(17):7659–7667Google Scholar
  2. 2.
    Chen Z, Zhou J, Guo Y, Liang C, Yang J, Wang J, Nuli Y (2018) A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery. Electrochim Acta 282:555–562Google Scholar
  3. 3.
    Jiang H, Liu XC, Wu Y, Shu Y, Gong X, Ke FS, Deng H (2018) Metal-organic frameworks for high charge-discharge rates in lithium–sulfur batteries. Angew Chem Int Ed 57(15):3916–3921Google Scholar
  4. 4.
    Zhang Y, Zong X, Zhan L, Yu X, Gao J, Xun C, Li P, Wang Y (2018) Double-shelled hollow carbon sphere with microporous outer shell towards high performance lithium–sulfur battery. Electrochim Acta 284:89–97Google Scholar
  5. 5.
    Wang M, Liu G, Wang H, Zhang H, Li X, Zhang H (2018) Anchor and activate sulfide with LiTi2(PO4)2.88F0.12 nano spheres for lithium sulfur battery application. J Mater Chem A 6(17):7639–7648Google Scholar
  6. 6.
    Xiao C, He P, Ren J, Yue M, Huang Y, He X (2018) Walnut-structure Si–G/C materials with high coulombic efficiency for long-life lithium ion batteries. RSC Adv 8(48):27580–27586Google Scholar
  7. 7.
    Byun S, Park J, Appiah WA, Ryou M-H, Lee YM (2017) The effects of humidity on the self-discharge properties of Li(Ni1/3Co1/3Mn1/3)O2/graphite and LiCoO2/graphite lithium-ion batteries during storage. RSC Adv 7(18):10915–10921Google Scholar
  8. 8.
    Ji B, Zhang F, Sheng M, Tong X, Tang Y (2017) A novel and generalized lithium-ion-battery configuration utilizing Al foil as both anode and current collector for enhanced energy density. Adv Mater 29(7):1604219Google Scholar
  9. 9.
    Santana I, Moreira T, Lelis M, Freitas M (2017) Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent. Mater Chem Phys 190:38–44Google Scholar
  10. 10.
    Wang M-M, Zhang C-C, Zhang F-S (2017) Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process. Waste Manag 67:232–239Google Scholar
  11. 11.
    Cui X, Jing Z, Luo M, Guo Y, Qiao H (2018) A new method for state of charge estimation of lithium-ion batteries using square root cubature Kalman filter. Energies 11(1):209Google Scholar
  12. 12.
    Chen C, Xiong R, Shen W (2018) A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation. IEEE Trans Power Electron 33(1):332–342Google Scholar
  13. 13.
    Hannan MA, Lipu MSH, Hussain A, Mohamed A (2017) A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew Sustain Energy Rev 78:834–854Google Scholar
  14. 14.
    Fang R, Zhao S, Sun Z, Wang W, Cheng HM, Li F (2017) More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater 29(48):1606823Google Scholar
  15. 15.
    Arumugam M, Yongzhu F, Sheng-Heng C, Chenxi Z, Yu-Sheng S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787Google Scholar
  16. 16.
    Peng HJ, Huang JQ, Cheng XB, Zhang Q (2017) Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater 7(24):1700260Google Scholar
  17. 17.
    Yang H, Li Q, Guo C, Naveed A, Yang J, Nuli Y, Wang J (2018) Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chem Commun 54(33):4132–4135.  https://doi.org/10.1039/C7CC09942H Google Scholar
  18. 18.
    Tan L, Li X, Wang Z, Guo H, Wang J (2018) Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 10(4):3707–3713Google Scholar
  19. 19.
    Garakani MA, Abouali S, Xu ZL, Huang J, Huang JQ, Kim JK (2017) Heterogeneous, mesoporous NiCo2O4–MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. J Mater Chem A 5(7):3547–3557Google Scholar
  20. 20.
    Guo J, Jing L, Huang Y, Min Z, Peng R (2016) Novel mesoporous TiO2 spheres as anode material for high-performance lithium-ion batteries. Mater Lett 181:289–291Google Scholar
  21. 21.
    Liang G, Wu J, Qin X, Liu M, Li Q, He YB, Kim JK, Li B, Kang F (2016) Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium–sulfur battery. ACS Appl Mater Interfaces 8(35):23105–23113Google Scholar
  22. 22.
    Lu Y, Huang Y, Yue Z, Cai Y, Wang X, Yong G, Jia D, Tang X (2016) Synthesis of sulfur/FePO4/graphene oxide nanocomposites for lithium–sulfur batteries. Ceram Int 42(9):11482–11485Google Scholar
  23. 23.
    Kim JH, Seo J, Choi J, Shin D, Carter M, Jeon Y, Wang C, Hu L, Paik U (2016) Synergistic ultrathin functional polymer-coated carbon nanotube interlayer for high performance lithium–sulfur batteries. ACS Appl Mater Interfaces 8(31):20092–20099Google Scholar
  24. 24.
    Sun Z, Ge S, Ran D, Xiang H (2017) Modification of a Pd-loaded electrode with a carbon nanotubes-polypyrrole interlayer and its dechlorination performance for 2,3-dichlorophenol. RSC Adv 7(36):22054–22062Google Scholar
  25. 25.
    Ma G, Wen Z, Jin J, Wu M, Wu X, Zhang J (2014) Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J Power Sources 267(1):542–546Google Scholar
  26. 26.
    Xin P, Bo J, Li H, Lang X, Yang C, Wang G, Zhu Y, Zhang W, Dou S, Jiang Q (2016) Facile synthesis of sulfur-polypyrrole as cathode for lithium–sulfur batteries. Chemelectrochem 4:115–121Google Scholar
  27. 27.
    Ma Z, Zhen L, Hu K, Liu D, Jia H, Wang S (2016) The enhancement of polysulfide absorbsion in Li S batteries by hierarchically porous CoS2/carbon paper interlayer. J Power Sources 325:71–78Google Scholar
  28. 28.
    Yang Y, Wang S, Jing Z, Yue X, Wang Z, Sun K (2016) High rate and stable cycling of lithium–sulfur batteries with carbon fiber cloth interlayer. Electrochim Acta 209:691–699Google Scholar
  29. 29.
    Jing L, Guo J, Li Z, Huang Y, Peng R-F (2016) Improving lithium–sulfur battery performance by using ternary hybrid cathode material. RSC Adv 6(32):26630–26636.  https://doi.org/10.1039/C6RA01722C Google Scholar
  30. 30.
    Zhang Z, Li Z, Hao F, Wang X, Li Q, Qi Y, Fan R, Yin L (2014) 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium–sulfur batteries with high rate capability and cycling stability. Adv Func Mater 24(17):2500–2509Google Scholar
  31. 31.
    Li S, Xia X, Wang X, Tu J (2016) Free-standing sulfur cathodes composited with carbon nanorods arrays for Li–S batteries application. Mater Res Bull 83:474–480Google Scholar
  32. 32.
    Deng J (2018) Vapor growth carbon fiber felt as an efficient interlayer for trapping polysulfide in lithium–sulfur battery. Int J Electrochem Sci 13(4):3651–3659Google Scholar
  33. 33.
    Li S, Ren G, Hoque MNF, Dong Z, Warzywoda J, Fan Z (2017) Carbonized cellulose paper as an effective interlayer in lithium–sulfur batteries. Appl Surf Sci 396:637–643Google Scholar
  34. 34.
    Liu M, Yang Z, Sun H, Lai C, Zhao X, Peng H, Liu T (2016) A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res 9(12):3735–3746Google Scholar
  35. 35.
    Kim HC (2012) A genome-wide association study identifies a breast cancer risk variant in ERBB4 at 2q34: results from the Seoul breast cancer study. Breast Cancer Res 14(2):R56Google Scholar
  36. 36.
    Song R, Fang R, Lei W, Ying S, Wang S, Feng L (2016) A trilayer separator with dual function for high performance lithium-sulfur batteries. J Power Sources 301:179–186Google Scholar
  37. 37.
    Freitag A, Stamm M, Ionov L (2017) Separator for lithium-sulfur battery based on polymer blend membrane. J Power Sources 363:384–391Google Scholar
  38. 38.
    Erickson EM, Markevich E, Salitra G, Sharon D, Hirshberg D, Llave EDL, Shterenberg I, Rozenman A, Frimer A, Aurbach D (2015) Review-development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions. J Electrochem Soc 162(14):A2424–A2438Google Scholar
  39. 39.
    Wei L, Chen Y, Li P, He J, Yan Z, Wang Z, Liu J, Fei Q, Zheng B, Zhou J (2015) Enhanced performance of lithium sulfur battery with a reduced graphene oxide coating separator. J Electrochem Soc 162(8):A1624–A1629Google Scholar
  40. 40.
    Zeng P, Huang L, Zhang X, Han Y, Chen Y (2018) Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement. Appl Surf Sci 427:S0169433217323942Google Scholar
  41. 41.
    Unemoto A, Yasaku S, Nogami G, Tazawa M, Taniguchi M, Matsuo M, Ikeshoji T, Orimo SI (2014) Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte. Appl Phys Lett 105(8):19Google Scholar
  42. 42.
    Zhang Y, Yan Z, Gosselink D, Chen P (2015) Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 21(2):381–385Google Scholar
  43. 43.
    Yue L, Jie L, Liu K, Liu Y, Jin L, Wang X (2016) Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem 18(13):3796–3803.  https://doi.org/10.1039/C6GC00444J Google Scholar
  44. 44.
    Xiao Z, Yang Z, Wang L, Nie H, Zhong M, Lai Q, Xu X, Zhang L, Huang S (2015) A lightweight TiO2/Graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries. Adv Mater 27(18):2891–2898Google Scholar
  45. 45.
    Deng J, Guo J, Li J, Zeng M, Yang Z (2019) Functional separator with VGCF/PPY coating for high cyclic stability lithium–sulfur battery. Mater Lett 234:35–37Google Scholar
  46. 46.
    Wu K, Yi H, Zhen S, Chen R, Peng P (2018) Highly efficient and green fabrication of a modified C nanofiber interlayer for high-performance Li–S batteries. J Mater Chem A 6(6):2693–2699Google Scholar
  47. 47.
    Jianna D, Jianqiang G, Jing L, Min Z, Daoyu G (2018) Improving the electrochemical property of Li–S batteries by using CoS2 as substrate materials. Ceram Int 44:17340–17344Google Scholar
  48. 48.
    Song H, Chen Z, Xu X, Wan Y, Chen Z (2018) A thin TiO2 NTs/GO hybrid membrane applied as an interlayer for lithium–sulfur batteries. RSC Advances 8(1):429–434Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environmentally-Friendly Energy Materials, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations