Skip to main content
Log in

A novel two-stage synthesis for 3C–SiC nanowires by carbothermic reduction and their photoluminescence properties

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A large quantity of 3C–SiC nanowires (SiCnws) with high purity were fabricated via carbothermic reduction method combined with a novel two-stage temperature program. At the first temperature stage, the reactants were kept at 1600 °C for 4 h to promote the formation of SiC nucleus and SiO intermediate gas. Then they were cooled to 1350 °C for 2 h at the second stage for the growth of SiCnws with fewer defects. Compared with the conventional single temperature method at 1600 °C for 6 h, the product prepared by this new strategy exhibits large yield and high purity with a narrow diameter range. As for the reaction mechanism, “solid–solid” and “solid–vapor” reactions occurring between SiO2, SiO and C dominate at the first stage. While “vapor–vapor” reaction between SiO and CO plays an important role at the second stage. Furthermore, photoluminescence (PL) properties were measured under the room temperature. A sharp violet light emission peak with a significant blue shift is observed at 401 nm compared to bulk 3C–SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Su L, Wang H, Niu M, Fan X, Ma M, Shi Z, Guo SW (2018) Ultralight, recoverable, and high-temperature-resistant SiC nanowire aerogel. ACS Nano 12(4):3103–3111. https://doi.org/10.1021/acsnano.7b08577

    Article  CAS  Google Scholar 

  2. Li J, Zhang Y, Kong Y, Hu L, Jin C, Xi Z (2017) Synthesis, characterization and field emission properties of SiC nanowires prepared by chemical vapor reaction. Vacuum 146:87–92. https://doi.org/10.1016/j.vacuum.2017.09.032

    Article  CAS  Google Scholar 

  3. Qiang X, Li H, Zhang Y, Wang Z, Ba Z, Zhang X (2016) Mechanical and oxidation protective properties of SiC nanowires-toughened SiC coating prepared in situ by a CVD process on C/C composites. Surf Coat Technol 307:91–98. https://doi.org/10.1016/j.surfcoat.2016.08.072

    Article  CAS  Google Scholar 

  4. Zekentes K, Rogdakis K (2011) SiC nanowires: material and devices. J Phys D Appl Phys 44(13):133001. https://doi.org/10.1088/0022-3727/44/13/133001

    Article  CAS  Google Scholar 

  5. Cheng Y, Hu P, Zhou S, Yan L, Sun B, Zhang X, Han W (2018) Achieving tunability of effective electromagnetic wave absorption between the whole X-band and Ku-band via adjusting PPy loading in SiC nanowires/graphene hybrid foam. Carbon 132:430–443. https://doi.org/10.1016/j.carbon.2018.02.084

    Article  CAS  Google Scholar 

  6. Chen J, Zhang Y, Hou X, Su L, Fan H, Chou K-C (2016) Fabrication and characterization of ultra light SiC whiskers decorated by RuO2 nanoparticles as hybrid supercapacitors. RSC Adv 6(23):19626–19631. https://doi.org/10.1039/c5ra27291b

    Article  CAS  Google Scholar 

  7. Yang T, Chang X, Chen J, Chou KC, Hou X (2015) B-doped 3C–SiC nanowires with a finned microstructure for efficient visible light-driven photocatalytic hydrogen production. Nanoscale 7(19):8955–8961. https://doi.org/10.1039/c5nr01742d

    Article  CAS  Google Scholar 

  8. Devaty RP, Choyke WJ (1997) Optical characterization of silicon carbide polytypes. Phys Status Solidi A 162(1):5–38. https://doi.org/10.1002/1521-396x(199707)162:1%3c5:aid-pssa5%3e3.0.co;2-j

    Article  CAS  Google Scholar 

  9. Wu XL, Fan JY, Qiu T, Yang X, Siu GG, Chu PK (2005) Experimental evidence for the quantum confinement effect in 3C–SiC nanocrystallites. Phys Rev Lett 94(2):026102. https://doi.org/10.1103/PhysRevLett.94.026102

    Article  CAS  Google Scholar 

  10. Chandrasekar MS, Srinivasan NR (2016) Role of SiOx on the photoluminescence properties of β-SiC. Ceram Int 42(7):8900–8908. https://doi.org/10.1016/j.ceramint.2016.02.145

    Article  CAS  Google Scholar 

  11. Fan JY, Wu XL, Chu PK (2006) Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties. Prog Mater Sci 51(8):983–1031. https://doi.org/10.1016/j.pmatsci.2006.02.001

    Article  CAS  Google Scholar 

  12. Prakash J, Venugopalan R, Tripathi BM, Ghosh SK, Chakravartty JK, Tyagi AK (2015) Chemistry of one dimensional silicon carbide materials: principle, production, application and future prospects. Prog Solid State Chem 43(3):98–122. https://doi.org/10.1016/j.progsolidstchem.2015.06.001

    Article  CAS  Google Scholar 

  13. Wu R, Zhou K, Yue CY, Wei J, Pan Y (2015) Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci 72:1–60. https://doi.org/10.1016/j.pmatsci.2015.01.003

    Article  CAS  Google Scholar 

  14. Phan H, Dinh T, Kozeki T, Nguyen T, Qamar A, Namazu T, Nguyen N, Dao DV (2016) The piezoresistive effect in top-down fabricated p-type 3C–SiC nanowires. IEEE Electron Device Lett 37(8):1029–1032. https://doi.org/10.1109/LED.2016.2579020

    Article  CAS  Google Scholar 

  15. Phan H-P, Dowling KM, Nguyen TK, Dinh T, Senesky DG, Namazu T, Dao DV, Nguyen N-T (2018) Highly sensitive pressure sensors employing 3C–SiC nanowires fabricated on a free standing structure. Mater Des 156:16–21. https://doi.org/10.1016/j.matdes.2018.06.031

    Article  CAS  Google Scholar 

  16. Shen G, Bando Y, Golberg D (2007) Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Cryst Growth Des 7(1):35–38

    Article  CAS  Google Scholar 

  17. Wu R, Chen J, Yang G, Wu L, Zhou S, Wang J, Pan Y (2008) Self-assembled one-dimensional hierarchical SiC nanostructures: microstructure, growth mechanism, and optical properties. J Cryst Growth 310(15):3573–3578. https://doi.org/10.1016/j.jcrysgro.2008.04.024

    Article  CAS  Google Scholar 

  18. Chen JJ, Shi QA, Gao LH, Zhu HL (2010) Large-scale synthesis of ultralong single-crystalline SiC nanowires. Phys Status Solidi a Appl Mater Sci 207(11):2483–2486. https://doi.org/10.1002/pssa.201026288

    Article  CAS  Google Scholar 

  19. Meng S, Guo X, Jin G, Wang Y, Xie S (2011) Preparation and microwave absorbing properties of SiC microtubes. J Mater Sci 47(6):2899–2902. https://doi.org/10.1007/s10853-011-6120-5

    Article  CAS  Google Scholar 

  20. Gao L, Zhong H, Chen Q (2013) Synthesis of 3C–SiC nanowires by reaction of poly(ethylene terephthalate) waste with SiO2 microspheres. J Alloy Compd 566:212–216. https://doi.org/10.1016/j.jallcom.2013.03.043

    Article  CAS  Google Scholar 

  21. Zhang J, Yan S, Jia Q, Huang J, Lin L, Zhang S (2016) Preparation of SiC/SiO2 core-shell nanowires via molten salt mediated carbothermal reduction route. Phys E Low Dimens Syst Nanostruct 80:19–24. https://doi.org/10.1016/j.physe.2016.01.002

    Article  CAS  Google Scholar 

  22. Zhu J, Jia J, F-l Kwong, Ng DHL (2013) Synthesis of 6H–SiC nanowires on bamboo leaves by carbothermal method. Diam Relat Mater 33:5–11. https://doi.org/10.1016/j.diamond.2012.12.010

    Article  CAS  Google Scholar 

  23. Li F, Tangstad M (2017) Carbothermal reduction of quartz with carbon from natural gas. Metall Mater Trans B Process Metall Mater Process Sci 48(2):853–869. https://doi.org/10.1007/s11663-016-0887-3

    Article  CAS  Google Scholar 

  24. Li X, Zhang G, Tronstad R, Ostrovski O (2016) Synthesis of SiC whiskers by VLS and VS process. Ceram Int 42(5):5668–5676. https://doi.org/10.1016/j.ceramint.2015.12.091

    Article  CAS  Google Scholar 

  25. Chen J, Ding L, Xin L, Zeng F, Chen J (2017) Thermochemistry and growth mechanism of SiC nanowires. J Solid State Chem 253:282–286. https://doi.org/10.1016/j.jssc.2017.06.009

    Article  CAS  Google Scholar 

  26. Li X, Zhang G, Tang K, Ostrovski O, Tronstad R (2015) Carbothermal reduction of quartz in different gas atmospheres. Metall Mater Trans B Process Metall Mater Process Sci 46(3):1343–1352. https://doi.org/10.1007/s11663-015-0293-2

    Article  CAS  Google Scholar 

  27. Li X, Zhang G, Tang K, Ostrovski O, Tronstad R (2015) Carbothermal reduction of quartz in methane–hydrogen–argon gas mixture. Metall Mater Trans B Process Metall Mater Process Sci 46(5):2384–2393. https://doi.org/10.1007/s11663-015-0407-x

    Article  CAS  Google Scholar 

  28. Chen CY, Lin CI, Chen SH (2000) Kinetics of synthesis of silicon carbide by carbothermal reduction of silicon dioxide. Br Ceram Trans 99(2):57–62. https://doi.org/10.1179/096797800680721

    Article  CAS  Google Scholar 

  29. Weimer AW, Nilsen KJ, Cochran GA, Roach RP (1993) Kinetics of carbothermal reduction synthesis of beta silicon carbide. AIChE J 39(3):493–503

    Article  CAS  Google Scholar 

  30. Chu A, Zhang D, Rafiud D, Guo S, Qu X (2015) Polyacrylamide-assisted combustion-carbothermal synthesis of well-distributed SiC nanowires. Ceram Int 41(10):14585–14591. https://doi.org/10.1016/j.ceramint.2015.07.176

    Article  CAS  Google Scholar 

  31. Hu P, Pan R, Dong S, Jin K, Zhang X (2016) Several millimeters long SiC–SiOx nanowires synthesized by carbon black and silica sol. Ceram Int 42(2):3625–3630. https://doi.org/10.1016/j.ceramint.2015.11.027

    Article  CAS  Google Scholar 

  32. Zhang Y, Chen J, Fan H, Chou KC, Hou X (2015) Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors. Dalton Trans 44(46):19974–19982. https://doi.org/10.1039/c5dt02971f

    Article  CAS  Google Scholar 

  33. Chen J, Liao X, Wang M, Liu Z, Zhang J, Ding L, Gao L, Li Y (2015) Highly flexible, nonflammable and free-standing SiC nanowire paper. Nanoscale 7(14):6374–6379. https://doi.org/10.1039/c5nr00776c

    Article  CAS  Google Scholar 

  34. Barin I (1989) Thermochemical Data of Pure Substances. VCH

  35. Zhang Z, Wang Y, Li H, Yuan W, Zhang X, Sun C, Zhang Z (2016) Atomic-scale observation of vapor-solid nanowire growth via oscillatory mass transport. ACS Nano 10(1):763–769. https://doi.org/10.1021/acsnano.5b05851

    Article  CAS  Google Scholar 

  36. Liu W, Chen J, Chou K-C, Hou X (2015) Large scale fabrication of dumbbell-shaped biomimetic SiC/SiO2 fibers. CrystEngComm 17(48):9318–9322. https://doi.org/10.1039/c5ce01892g

    Article  CAS  Google Scholar 

  37. Liu H, Huang Z, Huang J, Fang M, Liu Y-g WuX (2014) Thermal evaporation synthesis of SiC/SiOx nanochain heterojunctions and their photoluminescence properties. J Mater Chem C 2(37):7761–7767. https://doi.org/10.1039/c4tc01391c

    Article  CAS  Google Scholar 

  38. Stelmakh S, Palosz B, Gierlotka S (1996) Study of polytype phase transition beta to alpha SiC by qualitative and quantitative analysis of stacking disorder by X-ray diffraction and structure modelling. In: Cernik RJ, Delhez R, Mittemeijer EJ (eds) European Powder Diffraction: Epdic Iv, Pts 1 and 2, vol 228. Materials Science Forum, pp 663–668. https://doi.org/10.4028/www.scientific.net/MSF.228-231.663

  39. Cheng C, Li H, Fu Q, Li L, Guo L, Yin X, Tian X (2018) Effects of pyrocarbon on morphology stability of SiC nanowires at high temperatures. J Am Ceram Soc. https://doi.org/10.1111/jace.15524

    Article  Google Scholar 

  40. Fan J, Li H, Wang J, Xiao M (2012) Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC. Appl Phys Lett 101(13):131906. https://doi.org/10.1063/1.4755778

    Article  CAS  Google Scholar 

  41. Zhang L, Yang W, Jin H, Zheng Z, Xie Z, Miao H, An L (2006) Ultraviolet photoluminescence from 3C–SiC nanorods. Appl Phys Lett 89(14):143101. https://doi.org/10.1063/1.2358313

    Article  CAS  Google Scholar 

  42. Wieligor M, Wang Y, Zerda TW (2005) Raman spectra of silicon carbide small particles and nanowires. J Phys: Condens Matter 17(15):2387–2395. https://doi.org/10.1088/0953-8984/17/15/010

    Article  CAS  Google Scholar 

  43. Yan Y, Huang F, Zhang S, Zhu B, Shang E, Fan S (2001) Raman spectra of SiC nanorods with different excitation wavelengths. Chin Sci Bull 46(22):1865–1866

    Article  CAS  Google Scholar 

  44. Shi W, Zheng Y, Peng H, Ning W, Lee CS, Lee ST (2010) Laser ablation synthesis and optical characterization of silicon carbide nanowires. J Am Ceram Soc 83(12):3228–3230

    Article  Google Scholar 

  45. Rurali R (2005) Electronic and structural properties of silicon carbide nanowires. Phys Rev B. https://doi.org/10.1103/physrevb.71.205405

    Article  Google Scholar 

  46. Meng A, Li Z, Zhang J, Gao L, Li H (2007) Synthesis and Raman scattering of β-SiC/SiO2 core–shell nanowires. J Cryst Growth 308(2):263–268. https://doi.org/10.1016/j.jcrysgro.2007.08.022

    Article  CAS  Google Scholar 

  47. Rohmfeld S, Hundhausen M, Ley L, Zorman CA, Mehregany M (2002) Quantitative evaluation of biaxial strain in epitaxial 3C–SiC layers on Si(100) substrates by Raman spectroscopy. J Appl Phys 91(3):1113–1117. https://doi.org/10.1063/1.1427408

    Article  CAS  Google Scholar 

  48. Zhang WF, He YL, Zhang MS, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33(8):912–916. https://doi.org/10.1088/0022-3727/33/8/305

    Article  CAS  Google Scholar 

  49. Xu CY, Zhang PX, Yan L (2001) Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spectrosc 32(10):862–865. https://doi.org/10.1002/jrs.773

    Article  CAS  Google Scholar 

  50. Nakashima S, Harima H, Tomita T, Suemoto T (2000) Raman intensity profiles of folded longitudinal phonon modes in SiC polytypes. Phys Rev B 62(24):16605–16611

    Article  CAS  Google Scholar 

  51. Wang Q, Li Y, Jin S, Sang S, Xu Y, Wang G, Xu X (2017) Facile synthesis of SiOx spheres or dumbbell-shaped β-SiC whiskers on expanded graphite by silicon vapor deposition. Ceram Int 43(16):13282–13289. https://doi.org/10.1016/j.ceramint.2017.07.026

    Article  CAS  Google Scholar 

  52. Zhang M, Zhao J, Li Z, Yu H, Wang Y, Meng A, Li Q (2016) Bamboo-like 3C–SiC nanowires with periodical fluctuating diameter: homogeneous synthesis, synergistic growth mechanism, and their luminescence properties. J Solid State Chem 243:247–252. https://doi.org/10.1016/j.jssc.2016.08.032

    Article  CAS  Google Scholar 

  53. Wang H, Jiang W, Kang L, Li Z (2013) Photoluminescence and electron field-emission properties of SiC–SiO2 core–shell fibers and 3C–SiC nanowires on silicon nanoporous pillar array. J Alloy Compd 553:125–128. https://doi.org/10.1016/j.jallcom.2012.11.148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation for Excellent Young Scholars of China (No. 51522402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhong Chen or Xinmei Hou.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest with any individual/organization for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Chen, J., Li, B. et al. A novel two-stage synthesis for 3C–SiC nanowires by carbothermic reduction and their photoluminescence properties. J Mater Sci 54, 12450–12462 (2019). https://doi.org/10.1007/s10853-019-03749-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03749-5

Navigation