Skip to main content
Log in

Fabrication of a novel antibacterial TPU nanofiber membrane containing Cu-loaded zeolite and its antibacterial activity toward Escherichia coli

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel antibacterial thermoplastic polyurethane (TPU) nanofiber membrane was fabricated by electrospinning with the aid of Cu-loaded NaX zeolite (CuX), which showed excellent and long-lasting antibacterial activity against Escherichia coli (E. coli). The crystalline structure, morphology and composition of the obtained NaX zeolite, CuX and CuX/TPU nanofiber membrane were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF), respectively. The antibacterial activity of CuX/TPU nanofiber membrane against E. coli was investigated by inhibition zone method and plate-counting method, and it is indicated that the inactivation efficiency was increased from 58.40 to 99.85% with increasing the addition of CuX from 5 to 30% in 4 h. The result of kinetics study indicated that the disinfection process accorded with the pseudo-first-order model. The possible antibacterial mechanism was also proposed that the released Cu2+ by CuX in nanofiber membrane destroyed the cell wall and penetrated plasma membrane of E. coli. It is expected that this CuX/TPU nanofiber membrane with excellent antibacterial activity would be a promising candidate for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhang J, Woodruff TM, Clark RJ, Martin DJ, Minchin RF (2016) Release of bioactive peptides from polyurethane films in vitro and in vivo: effect of polymer composition. Acta Biomater 41:264–272

    Article  Google Scholar 

  2. Bazmara B, Tahersima M, Behravan A (2018) Influence of thermoplastic polyurethane and synthesized polyurethane additive in performance of asphalt pavements. Constr Build Mater 166:1–11

    Article  Google Scholar 

  3. Dong M, Li Q, Liu H, Liu C, Wujcik EK, Shao Q, Ding T, Mai X, Shen C, Guo Z (2018) Thermoplastic polyurethane-carbon black nanocomposite coating: fabrication and solid particle erosion resistance. Polymer 158:381–390

    Article  Google Scholar 

  4. Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C, Guo Z (2018) Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J Mater Chem C 6:2258–2269

    Article  Google Scholar 

  5. Ke K, Solouki Bonab V, Yuan D, Manas-Zloczower I (2018) Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139:52–58

    Article  Google Scholar 

  6. Chen R, Zhang X, Wang P, Xie K, Jian J, Zhang Y, Zhang J, Yuan Y, Na P, Yi M, Xu J (2018) Transparent thermoplastic polyurethane air filters for efficient electrostatic capture of particulate matter pollutants. Nanotechnology 30:015703

    Article  Google Scholar 

  7. Ren M, Zhou Y, Wang Y, Zheng G, Dai K, Liu C, Shen C (2019) Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem Eng J 360:762–777

    Article  Google Scholar 

  8. Xing C, Guan J, Chen Z, Zhu Y, Zhang B, Li Y, Li J (2015) Novel multifunctional nanofibers based on thermoplastic polyurethane and ionic liquid: towards antibacterial, anti-electrostatic and hydrophilic nonwovens by electrospinning. Nanotechnology 26(10):105704

    Article  Google Scholar 

  9. Bergmeister H, Seyidova N, Schreiber C, Strobl M, Grasl C, Walter I, Messner B, Baudis S, Fröhlich S, Marchetti-Deschmann M (2015) Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomater 11:104–113

    Article  Google Scholar 

  10. Hong Y, Guan J, Fujimoto KL, Hashizume R, Pelinescu AL, Wagner WR (2010) Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31(15):4249–4258

    Article  Google Scholar 

  11. Liu M, Liu T, Chen X, Yang J, Deng J, He W, Zhang X, Lei Q, Hu X, Luo G, Wu J (2018) Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. J Nanobiotechnol 16(1):89

    Article  Google Scholar 

  12. Aliabadi M, Irani M, Ismaeili J, Piri H, Parnian MJ (2013) Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem Eng J 220:237–243

    Article  Google Scholar 

  13. Quirós J, Borges JP, Boltes K, Rodea-Palomares I, Rosal R (2015) Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers. J Hazard Mater 299:298–305

    Article  Google Scholar 

  14. Sill TJ, Von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  Google Scholar 

  15. Ghosal K, Agatemor C, Špitálsky Z, Thomas S, Kny E (2019) Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chem Eng J 358:1262–1278

    Article  Google Scholar 

  16. Song DW, Kim SH, Kim HH, Lee KH, Chang SK, Park YH (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155

    Article  Google Scholar 

  17. Jiang S, Ma BC, Reinholz J, Li Q, Wang J, Zhang KAI, Landfester K, Crespy D (2016) Efficient nanofibrous membranes for antibacterial wound dressing and UV protection. ACS Appl Mater Interfaces 8:29915–29922

    Article  Google Scholar 

  18. Zander ZK, Chen P, Hsu Y-H, Dreger NZ, Savariau L, McRoy WC, Cerchiari AE, Chambers SD, Barton HA, Becker ML (2018) Post-fabrication QAC-functionalized thermoplastic polyurethane for contact-killing catheter applications. Biomaterials 178:339–350

    Article  Google Scholar 

  19. Xin J, Hao-Yang M, Salick MR, Cordie TM, Xiang-Fang P, Lih-Sheng T (2015) Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications. Mater Sci Eng, C 49(49):40–50

    Google Scholar 

  20. Yu E, Mi H-Y, Zhang J, Thomson JA, Turng L-S (2018) Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. J Biomed Mater Res A 106:985–996

    Article  Google Scholar 

  21. Jiang L, Jiang Y, Stiadle J, Wang X, Wang L, Li Q, Shen C, Thibeault SL, Turng LS (2019) Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Mater Sci Eng, C 94:740–749

    Article  Google Scholar 

  22. Akduman C, Özgüney I, Kumbasar EPA (2016) Preparation and characterization of naproxen-loaded electrospun thermoplastic polyurethane nanofibers as a drug delivery system. Mater Sci Eng, C 64:383–390

    Article  Google Scholar 

  23. Liu X, Zhou L, Heng P, Xiao J, Lv J, Zhang Q, Hickey ME, Tu Q, Wang J (2018) Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement. Colloids Surf B 175:264–271

    Article  Google Scholar 

  24. Francolini I, D’Ilario L, Guaglianone E, Donelli G, Martinelli A, Piozzi A (2010) Polyurethane anionomers containing metal ions with antimicrobial properties: thermal, mechanical and biological characterization. Acta Biomater 6(9):3482–3490

    Article  Google Scholar 

  25. Jiao L, Lin F, Cao S, Wang C, Wu H, Shu M, Hu C (2017) Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zincloaded montmorillonite. J Anim Sci Biotechnol 8(1):27

    Article  Google Scholar 

  26. Park SH, Ko YS, Park SJ, Lee JS, Cho J, Baek KY, Kim IT, Woo K, Lee JH (2016) Immobilization of silver nanoparticle-decorated silica particles on polyamide thin film composite membranes for antibacterial properties. J Membr Sci 499:80–91

    Article  Google Scholar 

  27. Akhigbe L, Ouki S, Saroj D (2016) Disinfection and removal performance for Escherichia coli and heavy metals by silver-modified zeolite in a fixed bed column. Chem Eng J 295:92–98

    Article  Google Scholar 

  28. Zhang Y, Xu C, He Y, Wang X, Xing F, Qiu H, Liu Y, Ma D, Lin T, Gao J (2011) Zeolite/polymer composite hollow microspheres containing antibiotics and the in vitro drug release. J Biomater Sci Polym Ed 22(4–6):809–822

    Article  Google Scholar 

  29. Vilaça N, Amorim R, Martinho O, Reis RM, Baltazar F, Fonseca AM, Neves IC (2011) Encapsulation of α-cyano-4-hydroxycinnamic acid into a NaY zeolite. J Mater Sci 46(23):7511–7516. https://doi.org/10.1007/s10853-011-5722-2

    Article  Google Scholar 

  30. Vilaça N, Amorim R, Machado AF, Parpot P, Pereira MFR, Sardo M, Rocha J, Fonseca AM, Neves IC, Baltazar F (2013) Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids Surf B 112(1):237–244

    Article  Google Scholar 

  31. Tavolaro A, Riccio II, Tavolaro P (2013) Hydrothermal synthesis of zeolite composite membranes and crystals as potential vectors for drug-delivering biomaterials. Microporous Mesoporous Mater 167:62–70

    Article  Google Scholar 

  32. Khatamian M, Divband B, Farahmand-zahed F (2016) Synthesis and characterization of zinc (II)-loaded zeolite/graphene oxide nanocomposite as a new drug carrier. Mater Sci Eng, C 66:251–258

    Article  Google Scholar 

  33. Amorim R, Vilaça N, Martinho O, Reis RM, Sardo M, Rocha J, Fonseca AM, Baltazar F, Neves IC (2012) Zeolite structures loading with an anticancer compound as drug delivery systems. J Phys Chem C 116(48):25642–25650

    Article  Google Scholar 

  34. Iqbal N, Abdul Kadir MR, Mahmood NHB, Yusoff MFM, Siddique JA, Salim N, Froemming GRA, Sarian MN, Balaji Raghavendran HR, Kamarul T (2014) Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications. Ceram Int 40(10):16091–16097

    Article  Google Scholar 

  35. Wang J, Wang Z, Guo S, Zhang J, Song Y, Dong X, Wang X, Yu J (2011) Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous Mesoporous Mater 146(1–3):216–222

    Article  Google Scholar 

  36. Kaur B, Srivastava R, Satpati B, Kondepudi KK, Bishnoi M (2015) Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid. Colloids Surf B 135:201–208

    Article  Google Scholar 

  37. Liu X, Wang R (2017) Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite. J Hazard Mater 326:157–164

    Article  Google Scholar 

  38. Chao C, Park DW, Ahn WS (2014) CO2 capture using zeolite 13X prepared from bentonite. Appl Surf Sci 292:63–67

    Article  Google Scholar 

  39. Ferreira L, Fonseca AM, Botelho G, Almeida-Aguiar C, Neves IC (2012) Antimicrobial activity of faujasite zeolites doped with silver. Microporous Mesoporous Mater 160(160):126–132

    Article  Google Scholar 

  40. Krishnani KK, Yu Z, Xiong L, Yan Y, Boopathy R, Mulchandani A (2012) Bactericidal and ammonia removal activity of silver ion-exchanged zeolite. Bioresour Technol 117:86–91

    Article  Google Scholar 

  41. Fox S, Wilkinson TS, Wheatley PS, Xiao B, Morris RE, Sutherland A, Simpson AJ, Barlow PG, Butler AR, Megson IL (2010) NO-loaded Zn-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. Acta Biomater 6(4):1515–1521

    Article  Google Scholar 

  42. Yao G, Lei J, Zhang W, Yu C, Sun Z, Zheng S, Komarneni S (2019) Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus. Environ Sci Pollut Res 26:2782–2793

    Article  Google Scholar 

  43. Chen Y, Zhang Y, Liu J, Zhang H, Wang K (2012) Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions. Chem Eng J 210(6):298–308

    Google Scholar 

  44. Stafford SL, Bokil NJ, Achard MES, Ronan K, Schembri MA, Mcewan AG, Sweet MJ (2013) Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Biosci Rep 33(4):541–554

    Article  Google Scholar 

  45. Zhao C, Liu B, Bi X, Liu D, Pan C, Wang L, Pang Y (2016) A novel flavonoid-based bioprobe for intracellular recognition of Cu2+ and its complex with Cu2+ for secondary sensing of pyrophosphate. Sens Actuators B Chem 229:131–137

    Article  Google Scholar 

  46. Radovanović Ž, Jokić B, Veljović D, Dimitrijević S, Kojić V, Petrović R, Janaćković D (2014) Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite. Appl Surf Sci 307:513–519

    Article  Google Scholar 

  47. Boschetto DL, Lerin L, Cansian R, Pergher SBC, Luccio MD (2012) Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chem Eng J 204–206:210–216

    Article  Google Scholar 

  48. Shi H, Fu L, Xue L (2013) Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping Ag-loaded zeolites. J Membr Sci 437(12):205–215

    Article  Google Scholar 

  49. Liao C, Ping Y, Zhao J, Wang L, Luo Y (2011) Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials. Desalination 272(1):59–65

    Article  Google Scholar 

  50. Yao G, Lei J, Zhang X, Sun Z, Zheng S (2018) One-step hydrothermal synthesis of zeolite X powder from natural low-grade diatomite. Materials 11(6):906

    Article  Google Scholar 

  51. Zhang Y, Zhong S, Zhang M, Lin Y (2009) Antibacterial activity of silver-loaded zeolite a prepared by a fast microwave-loading method. J Mater Sci 44(2):457–462. https://doi.org/10.1007/s10853-008-3129-5

    Article  Google Scholar 

  52. Hanim SAM, Malek NANN, Ibrahim Z (2016) Amine-functionalized, silver-exchanged zeolite NaY: preparation, characterization and antibacterial activity. Appl Surf Sci 360:121–130

    Article  Google Scholar 

  53. Chick H (1908) An investigation of the laws of disinfection. J Hyg 8(01):92–158

    Article  Google Scholar 

  54. Zhu L, Dai J, Chen L, Chen J, Na H, Zhu J (2017) Design and fabrication of imidazolium ion-immobilized electrospun polyurethane membranes with antibacterial activity. J Mater Sci 52(5):2473–2483. https://doi.org/10.1007/s10853-016-0542-z

    Article  Google Scholar 

  55. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), Yueqi Funding Scheme for Young Scholars (China university of Mining &Technology, Beijing), Beijing Excellent Talent Training Subsidy Program (2017000020124G089), Science and technology Project of Beijing Municipal Education Commission (KM201910012010), High Levels of Teachers’ Team Construction Special Funds of Beijing Institute of Fashion Technology (BIFTQG201807) and Talent introduction program of Beijing Institute of Fashion Technology (2017A-19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Sun or Bin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Yao, G., Sun, Z. et al. Fabrication of a novel antibacterial TPU nanofiber membrane containing Cu-loaded zeolite and its antibacterial activity toward Escherichia coli. J Mater Sci 54, 11682–11693 (2019). https://doi.org/10.1007/s10853-019-03727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03727-x

Navigation