Advertisement

Journal of Materials Science

, Volume 54, Issue 17, pp 11485–11496 | Cite as

Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting

  • Yun-Lai Zhu
  • Jun-Hui Yuan
  • Ya-Qian Song
  • Sheng Wang
  • Kan-Hao XueEmail author
  • Ming Xu
  • Xiao-Min ChengEmail author
  • Xiang-Shui Miao
Computation & theory

Abstract

Highly efficient water splitting based on solar energy is one of the most attractive research focuses in the energy field. Searching for more candidate photocatalysts that can work under visible-light irradiation is highly demanded. Herein, using first-principles calculations based on density functional theory, we show that the two-dimensional silicon chalcogenides, i.e., SiX (X = S, Se, Te) monolayers, as semiconductors with 2.43–3.00 eV band gaps, exhibit favorable band edge positions for photocatalytic water splitting. The optical calculations demonstrate that the SiX monolayers have pronounced optical absorption in the visible-light region. Moreover, the band gaps and band edge positions of silicon chalcogenides monolayers can be tuned by applying biaxial strain or increasing the number of layers, in order to better fit the redox potentials of water. The combined electronic properties, high carrier mobility and optical properties render the two-dimensional SiX a promising photocatalyst for water splitting.

Notes

Acknowledgements

This work was supported by “The National Key Research and Development Program of China (17YFB0405601)” and the National Natural Science Foundation of China under Grant No. 11704134. K.-H. Xue received support from China Scholarship Council (No. 201806165012).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_3699_MOESM1_ESM.pdf (965 kb)
Supplementary material 1 (PDF 965 kb)

References

  1. 1.
    Kirubasankar B, Murugadoss V, Lin J et al (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10:20414–20425.  https://doi.org/10.1039/C8NR06345A CrossRefGoogle Scholar
  2. 2.
    Le K, Wang Z, Wang F et al (2019) Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans 48:5193–5202.  https://doi.org/10.1039/C9DT00615J CrossRefGoogle Scholar
  3. 3.
    Lin C, Hu L, Cheng C et al (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72.  https://doi.org/10.1016/j.electacta.2017.11.051 CrossRefGoogle Scholar
  4. 4.
    Lou X, Lin C, Luo Q et al (2017) Crystal structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem 4:3171–3180.  https://doi.org/10.1002/celc.201700816 CrossRefGoogle Scholar
  5. 5.
    Yuan L, Zhang Y, Wang Z et al (2019) Plant oil and lignin-derived elastomers via thermal azide-alkyne cycloaddition click chemistry. ACS Sustain Chem Eng 7:2593–2601.  https://doi.org/10.1021/acssuschemeng.8b05617 CrossRefGoogle Scholar
  6. 6.
    Zhao W, Li X, Yin R et al (2019) Urchin-like NiO–NiCo2O4 heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li–O2 batteries. Nanoscale 11:50–59.  https://doi.org/10.1039/C8NR08457B CrossRefGoogle Scholar
  7. 7.
    Zhao Y-H, Tian X-L, Zhao B et al (2018) Precipitation sequence of middle al concentration alloy using the inversion algorithm and microscopic phase field model. Sci Adv Mater 10:1793–1804.  https://doi.org/10.1166/sam.2018.3430 CrossRefGoogle Scholar
  8. 8.
    Ge R, Wang S, Su J et al (2018) Phase-selective synthesis of self-supported RuP films for efficient hydrogen evolution electrocatalysis in alkaline media. Nanoscale 10:13930–13935.  https://doi.org/10.1039/C8NR03554G CrossRefGoogle Scholar
  9. 9.
    Shindume LH, Zhao Z, Wang N et al (2019) Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. J Nanosci Nanotechnol 19:839–849.  https://doi.org/10.1166/jnn.2019.15745 CrossRefGoogle Scholar
  10. 10.
    Tian J, Shao Q, Zhao J et al (2019) Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. J Colloids Interface Sci 541:18–29.  https://doi.org/10.1016/j.jcis.2019.01.069 CrossRefGoogle Scholar
  11. 11.
    Wang C, Lan F, He Z et al (2019) Iridium—based catalysts for solid polymer electrolyte electrocatalytic water splitting. Chemsuschem 12:1576–1590.  https://doi.org/10.1002/cssc.201802873 CrossRefGoogle Scholar
  12. 12.
    Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107:4022–4047.  https://doi.org/10.1021/cr050193e CrossRefGoogle Scholar
  13. 13.
    Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrogen Energy 34:615–627.  https://doi.org/10.1016/j.ijhydene.2008.11.014 CrossRefGoogle Scholar
  14. 14.
    Chang Kwon K, Choi S, Lee J et al (2017) Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. J Mater Chem A 5:15534–15542.  https://doi.org/10.1039/C7TA03845C CrossRefGoogle Scholar
  15. 15.
    Hu X, Li G, Yu JC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26:3031–3039.  https://doi.org/10.1021/la902142b CrossRefGoogle Scholar
  16. 16.
    Liu J, Liu Y, Liu N et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974.  https://doi.org/10.1126/science.aaa3145 CrossRefGoogle Scholar
  17. 17.
    Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661.  https://doi.org/10.1021/jz1007966 CrossRefGoogle Scholar
  18. 18.
    Rahman MA, Bazargan S, Srivastava S et al (2015) Defect-rich decorated TiO2 nanowires for super-efficient photoelectrochemical water splitting driven by visible light. Energy Environ Sci 8:3363–3373.  https://doi.org/10.1039/C5EE01615K CrossRefGoogle Scholar
  19. 19.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570.  https://doi.org/10.1021/cr1001645 CrossRefGoogle Scholar
  20. 20.
    Sun Y, Cheng H, Gao S et al (2012) Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew Chem 124:8857–8861.  https://doi.org/10.1002/ange.201204675 CrossRefGoogle Scholar
  21. 21.
    Zhang L, Qin M, Yu W et al (2017) Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J Electrochem Soc 164:H1086–H1090.  https://doi.org/10.1149/2.0881714jes CrossRefGoogle Scholar
  22. 22.
    Zhang L, Yu W, Han C et al (2017) Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J Electrochem Soc 164:H651–H656.  https://doi.org/10.1149/2.1531709jes CrossRefGoogle Scholar
  23. 23.
    Pan D, Ge S, Zhao J et al (2018) Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalton Trans 47:9765–9778.  https://doi.org/10.1039/C8DT01045E CrossRefGoogle Scholar
  24. 24.
    Song B, Wang T, Sun H et al (2017) Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans 46:15769–15777.  https://doi.org/10.1039/C7DT03003G CrossRefGoogle Scholar
  25. 25.
    Zhao J, Ge S, Pan D et al (2018) Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. J Colloids Interface Sci 529:111–121.  https://doi.org/10.1016/j.jcis.2018.05.091 CrossRefGoogle Scholar
  26. 26.
    Sun H, Yang Z, Pu Y et al (2019) Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J Colloids Interface Sci 547:40–49.  https://doi.org/10.1016/j.jcis.2019.03.061 CrossRefGoogle Scholar
  27. 27.
    Zhao Z, An H, Lin J et al (2018) Progress on the Photocatalytic Reduction Removal of Chromium Contamination. Chem Rec.  https://doi.org/10.1002/tcr.201800153 Google Scholar
  28. 28.
    Dervin S, Dionysiou DD, Pillai SC (2016) 2D nanostructures for water purification: graphene and beyond. Nanoscale 8:15115–15131.  https://doi.org/10.1039/C6NR04508A CrossRefGoogle Scholar
  29. 29.
    Varghese JO, Agbo P, Sutherland AM et al (2015) The influence of water on the optical properties of single-layer molybdenum disulfide. Adv Mater 27:2734–2740.  https://doi.org/10.1002/adma.201500555 CrossRefGoogle Scholar
  30. 30.
    Singh AK, Mathew K, Zhuang HL, Hennig RG (2015) Computational screening of 2D Materials for photocatalysis. J Phys Chem Lett 6:1087–1098.  https://doi.org/10.1021/jz502646d CrossRefGoogle Scholar
  31. 31.
    Su T, Shao Q, Qin Z et al (2018) Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal 8:2253–2276.  https://doi.org/10.1021/acscatal.7b03437 CrossRefGoogle Scholar
  32. 32.
    Zhang X, Zhang Z, Wu D et al (2018) Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts. Small Methods 2:1700359.  https://doi.org/10.1002/smtd.201700359 CrossRefGoogle Scholar
  33. 33.
    Lin Z, Lin B, Wang Z et al (2019) Facile preparation of 1T/2H—Mo(S1−x Sex)2 nanoparticles for boosting hydrogen evolution reaction. ChemCatChem 11:2217–2222.  https://doi.org/10.1002/cctc.201900095 CrossRefGoogle Scholar
  34. 34.
    Sheng Y, Yang J, Wang F et al (2019) Sol–gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl Surf Sci 465:154–163.  https://doi.org/10.1016/j.apsusc.2018.09.137 CrossRefGoogle Scholar
  35. 35.
    Zhuang HL, Hennig RG (2013) Computational search for single-layer transition-metal dichalcogenide photocatalysts. J Phys Chem C 117:20440–20445.  https://doi.org/10.1021/jp405808a CrossRefGoogle Scholar
  36. 36.
    Guo Z, Zhou J, Zhu L, Sun Z (2016) MXene: a promising photocatalyst for water splitting. J Mater Chem A 4:11446–11452.  https://doi.org/10.1039/C6TA04414J CrossRefGoogle Scholar
  37. 37.
    Zhuang HL, Hennig RG (2013) Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem Mater 25:3232–3238.  https://doi.org/10.1021/cm401661x CrossRefGoogle Scholar
  38. 38.
    Bai Y, Luo G, Meng L et al (2018) Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts. Phys Chem Chem Phys 20:14619–14626.  https://doi.org/10.1039/C8CP01463A CrossRefGoogle Scholar
  39. 39.
    Fang DQ, Chen X, Gao PF et al (2017) Mono- and bilayer ZnSnN2 sheets for visible-light photocatalysis: first-principles predictions. J Phys Chem C 121:26063–26068.  https://doi.org/10.1021/acs.jpcc.7b07115 CrossRefGoogle Scholar
  40. 40.
    Zhang X, Zhao X, Wu D et al (2016) MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility. Adv Sci 3:1600062.  https://doi.org/10.1002/advs.201600062 CrossRefGoogle Scholar
  41. 41.
    Fei R, Li W, Li J, Yang L (2015) Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl Phys Lett 107:173104.  https://doi.org/10.1063/1.4934750 CrossRefGoogle Scholar
  42. 42.
    Guan S, Liu C, Lu Y et al (2018) Tunable ferroelectricity and anisotropic electric transport in monolayer β-GeSe. Phys Rev B.  https://doi.org/10.1103/PhysRevB.97.144104 Google Scholar
  43. 43.
    Jiang H, Zhao T, Ren Y et al (2017) Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries. Sci Bull 62:572–578.  https://doi.org/10.1016/j.scib.2017.03.026 CrossRefGoogle Scholar
  44. 44.
    Li L, Chen Z, Hu Y et al (2013) Single-layer single-crystalline SnSe nanosheets. J Am Chem Soc 135:1213–1216.  https://doi.org/10.1021/ja3108017 CrossRefGoogle Scholar
  45. 45.
    Lv X, Wei W, Sun Q et al (2017) Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility. Appl Catal B Environ 217:275–284.  https://doi.org/10.1016/j.apcatb.2017.05.087 CrossRefGoogle Scholar
  46. 46.
    Niu C, Buhl PM, Bihlmayer G et al (2015) Topological crystalline insulator and quantum anomalous Hall states in IV–VI-based monolayers and their quantum wells. Phys Rev B.  https://doi.org/10.1103/PhysRevB.91.201401 Google Scholar
  47. 47.
    Patel M, Kim H-S, Kim J (2017) Wafer-scale production of vertical SnS multilayers for high-performing photoelectric devices. Nanoscale 9:15804–15812.  https://doi.org/10.1039/C7NR03370B CrossRefGoogle Scholar
  48. 48.
    Ramasamy P, Kwak D, Lim D-H et al (2016) Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors. J Mater Chem C 4:479–485.  https://doi.org/10.1039/C5TC03667D CrossRefGoogle Scholar
  49. 49.
    Wan W, Liu C, Xiao W, Yao Y (2017) Promising ferroelectricity in 2D group IV tellurides: a first-principles study. Appl Phys Lett 111:132904.  https://doi.org/10.1063/1.4996171 CrossRefGoogle Scholar
  50. 50.
    Zhou X, Zhang Q, Gan L et al (2016) Booming development of group IV–VI semiconductors: fresh blood of 2D family. Adv Sci 3:1600177.  https://doi.org/10.1002/advs.201600177 CrossRefGoogle Scholar
  51. 51.
    Kamal C, Chakrabarti A, Ezawa M (2016) Direct band gaps in group IV–VI monolayer materials: binary counterparts of phosphorene. Phys Rev B 93:125428.  https://doi.org/10.1103/PhysRevB.93.125428 CrossRefGoogle Scholar
  52. 52.
    Chowdhury C, Karmakar S, Datta A (2017) Monolayer group IV–VI Monochalcogenides: low-dimensional materials for photocatalytic water splitting. J Phys Chem C 121:7615–7624.  https://doi.org/10.1021/acs.jpcc.6b12080 CrossRefGoogle Scholar
  53. 53.
    Ji Y, Yang M, Dong H et al (2017) Two-dimensional germanium monochalcogenide photocatalyst for water splitting under ultraviolet, visible to near-infrared light. Nanoscale 9:8608–8615.  https://doi.org/10.1039/C7NR00688H CrossRefGoogle Scholar
  54. 54.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  55. 55.
    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50.  https://doi.org/10.1016/0927-0256(96)00008-0 CrossRefGoogle Scholar
  56. 56.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979.  https://doi.org/10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  57. 57.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775.  https://doi.org/10.1103/PhysRevB.59.1758 CrossRefGoogle Scholar
  58. 58.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  59. 59.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215.  https://doi.org/10.1063/1.1564060 CrossRefGoogle Scholar
  60. 60.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799.  https://doi.org/10.1002/jcc.20495 CrossRefGoogle Scholar
  61. 61.
    Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106.  https://doi.org/10.1103/PhysRevB.78.134106 CrossRefGoogle Scholar
  62. 62.
    Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643.  https://doi.org/10.1063/1.463940 CrossRefGoogle Scholar
  63. 63.
    Zhao J, Wu L, Zhan C et al (2017) Overview of polymer nanocomposites: computer simulation understanding of physical properties. Polymer 133:272–287.  https://doi.org/10.1016/j.polymer.2017.10.035 CrossRefGoogle Scholar
  64. 64.
    Zhao Y, Deng S, Liu H et al (2018) First-principle investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2 (A = Al and Si). Comput Mater Sci 154:365–370.  https://doi.org/10.1016/j.commatsci.2018.07.007 CrossRefGoogle Scholar
  65. 65.
    Zhao Y, Qi L, Jin Y et al (2015) The structural, elastic, electronic properties and Debye temperature of D022–Ni3V under pressure from first-principles. J Alloys Compd 647:1104–1110.  https://doi.org/10.1016/j.jallcom.2015.05.268 CrossRefGoogle Scholar
  66. 66.
    Chen Y, Sun Q, Jena P (2016) SiTe monolayers: Si-based analogues of phosphorene. J Mater Chem C 4:6353–6361.  https://doi.org/10.1039/C6TC01138A CrossRefGoogle Scholar
  67. 67.
    Ding Y, Wang Y (2013) Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J Phys Chem C 117:18266–18278.  https://doi.org/10.1021/jp407666m CrossRefGoogle Scholar
  68. 68.
    Guan J, Zhu Z, Tománek D (2014) Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.113.046804 Google Scholar
  69. 69.
    Kamal C, Ezawa M (2015) Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B.  https://doi.org/10.1103/PhysRevB.91.085423 Google Scholar
  70. 70.
    Mouhat F, Coudert F-X (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B.  https://doi.org/10.1103/PhysRevB.90.224104 Google Scholar
  71. 71.
    Sun Z, Zhang L, Dang F et al (2017) Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19:3288–3298.  https://doi.org/10.1039/C7CE00279C CrossRefGoogle Scholar
  72. 72.
    Yuan J-H, Gao B, Wang W et al (2015) First-principles calculations of the electronic structure and optical properties of Y–Cu Co-Doped ZnO. Acta Phys-Chim Sin 31:1302–1308.  https://doi.org/10.3866/PKU.WHXB201505081 Google Scholar
  73. 73.
    Song Y-Q, Yuan J-H, Li L-H et al (2019) KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism. Nanoscale 11:1131–1139.  https://doi.org/10.1039/C8NR08046A CrossRefGoogle Scholar
  74. 74.
    Shirayama M, Kadowaki H, Miyadera T et al (2016) Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys Rev Appl 5:014012.  https://doi.org/10.1103/PhysRevApplied.5.014012 CrossRefGoogle Scholar
  75. 75.
    Yuan J, Yu N, Xue K, Miao X (2017) Ideal strength and elastic instability in single-layer 8-Pmmn borophene. RSC Adv 7:8654–8660.  https://doi.org/10.1039/C6RA28454J CrossRefGoogle Scholar
  76. 76.
    Yuan J, Yu N, Wang J et al (2018) Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl Surf Sci 436:919–926.  https://doi.org/10.1016/j.apsusc.2017.12.093 CrossRefGoogle Scholar
  77. 77.
    Qiao M, Chen Y, Wang Y, Li Y (2018) The germanium telluride monolayer: a two dimensional semiconductor with high carrier mobility for photocatalytic water splitting. J Mater Chem A 6:4119–4125.  https://doi.org/10.1039/C7TA10360C CrossRefGoogle Scholar
  78. 78.
    Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728.  https://doi.org/10.1039/C5EE03732H CrossRefGoogle Scholar
  79. 79.
    Chakrapani V, Angus JC, Anderson AB et al (2007) Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318:1424–1430.  https://doi.org/10.1126/science.1148841 CrossRefGoogle Scholar
  80. 80.
    Miao N, Zhou J, Sa B et al (2017) Few-layer arsenic trichalcogenides: emerging two-dimensional semiconductors with tunable indirect-direct band-gaps. J Alloys Compd 699:554–560.  https://doi.org/10.1016/j.jallcom.2016.12.351 CrossRefGoogle Scholar
  81. 81.
    Jeon NJ, Noh JH, Kim YC et al (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903.  https://doi.org/10.1038/nmat4014 CrossRefGoogle Scholar
  82. 82.
    Ji Y, Yang M, Lin H et al (2018) Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. J Phys Chem C 122:3123–3129.  https://doi.org/10.1021/acs.jpcc.7b11584 CrossRefGoogle Scholar
  83. 83.
    Guo S, Zhu Z, Hu X et al (2018) Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale 10:8397–8403.  https://doi.org/10.1039/C8NR01028E CrossRefGoogle Scholar
  84. 84.
    Li J, Miranda HPC, Niquet Y-M et al (2015) Phonon-limited carrier mobility and resistivity from carbon nanotubes to graphene. Phys Rev B.  https://doi.org/10.1103/PhysRevB.92.075414 Google Scholar
  85. 85.
    Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80.  https://doi.org/10.1103/PhysRev.80.72 CrossRefGoogle Scholar
  86. 86.
    Qiao J, Kong X, Hu Z-X et al (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun.  https://doi.org/10.1038/ncomms5475 Google Scholar
  87. 87.
    Schusteritsch G, Uhrin M, Pickard CJ (2016) Single-layered Hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano Lett 16:2975–2980.  https://doi.org/10.1021/acs.nanolett.5b05068 CrossRefGoogle Scholar
  88. 88.
    Cai Y, Zhang G, Zhang Y-W (2014) Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J Am Chem Soc 136:6269–6275.  https://doi.org/10.1021/ja4109787 CrossRefGoogle Scholar
  89. 89.
    Miao N, Xu B, Bristowe NC et al (2017) Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer. J Am Chem Soc 139:11125–11131.  https://doi.org/10.1021/jacs.7b05133 CrossRefGoogle Scholar
  90. 90.
    Dai J, Zeng XC (2015) Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew Chem Int Ed 54:7572–7576.  https://doi.org/10.1002/anie.201502107 CrossRefGoogle Scholar
  91. 91.
    Lang H, Zhang S, Liu Z (2016) Mobility anisotropy of two-dimensional semiconductors. Phys Rev B.  https://doi.org/10.1103/PhysRevB.94.235306 Google Scholar
  92. 92.
    Zhou M, Chen X, Li M, Du A (2017) Widely tunable and anisotropic charge carrier mobility in monolayer tin(ii) selenide using biaxial strain: a first-principles study. J Mater Chem C 5:1247–1254.  https://doi.org/10.1039/C6TC04692D CrossRefGoogle Scholar
  93. 93.
    Jing Y, Ma Y, Wang Y et al (2017) Ultrathin layers of PdPX (X = S, Se): two dimensional semiconductors for photocatalytic water splitting. Chem Eur J 23:13612–13616.  https://doi.org/10.1002/chem.201703683 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wuhan National Research Center for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  2. 2.Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHCGrenobleFrance

Personalised recommendations