Skip to main content
Log in

Preparation of high-quality CuGa2O4 film via annealing process of Cu/β-Ga2O3

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-quality CuGa2O4 film has been successfully prepared on β-Ga2O3 (\( \bar{2}01 \)) single-crystal substrate via annealing method at 1050 °C temperature under air after evaporating Cu film. According to high-resolution X-ray diffraction measurement results, the crystallinity of CuGa2O4 film and epitaxial relationship between CuGa2O4 film and β-Ga2O3 (\( \bar{2}01 \)) substrate was confirmed. The CuGa2O4 film has the preferred [111] orientation and the full-width half-maximum of CuGa2O4 film of (222) peak is 0.228°. The CuGa2O4 (111) plane is parallel to the β-Ga2O3 (\( \bar{2}01 \)) plane (out-plane) and the CuGa2O4 [\( \bar{1}\bar{1}2 \)], and [110] directions are parallel to the β-Ga2O3 [102] and [010] directions (in-plane), respectively. In addition, the lattice mismatch between CuGa2O4 [111] and β-Ga2O3 (\( \bar{2}01 \)) substrate has also been calculated. These results suggest that high-quality and preferred orientation CuGa2O4 film can be prepared on β-Ga2O3 (\( \bar{2}01 \)) substrate with Cu film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Faungnawakij K, Shimoda N, Fukunaga T, Kikuchi R, Eguchi K (2008) Cu-based spinel catalysts CuB2O4 (B = Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethyl ether. Appl Catal A Gen 341:139–145

    Article  Google Scholar 

  2. Boumaza S, Auroux A, Bennici S, Boudjemaa A, Trari M, Bouguelia A, Bouarab R (2010) Water gas shift reaction over the CuB2O4 spinel catalysts. React Kinet Mech Catal 100:145–151

    Google Scholar 

  3. Zhang GY, Guo B, Chen J (2006) MCo2O4 (M = Ni, Cu, Zn) nanotubes: template synthesis and application in gas sensors. Sens Actuators B Chem 114:402–409

    Article  Google Scholar 

  4. Tudorache F, Rezlescu E, Popa PD, Rezlescu N (2008) Study of some simple ferrites as reducing gas sensors. J Optoelectron Adv Mater 10:1889–1893

    Google Scholar 

  5. Rezlescu N, Rezlescu E, Tudorache F, Popa PD (2009) Gas sensing properties of porous Cu-, Cd- and Zn-ferrites. Roman Rep Phys 61:223–234

    Google Scholar 

  6. Tang GD, Li ZZ, Ma L, Qi WH, Wu LQ, Ge XS, Wu GH, Hu FX (2018) Three models of magnetic ordering in typical magnetic materials. Phys Rep Rev Sect Phys Lett 758:1–56

    Google Scholar 

  7. Afriani F, Ciswandi, Hermanto B, Sudiro T (2018) Synthesis of CuMn2O4 spinel and its magnetic properties characterization. In: Amal MI, Herbirowo S, Hasbi MY, Lestari Y, Annur D, Malau DP (eds) Proceedings of the International Seminar on Metallurgy and Materials (ISMM2017), AIP Conference Proceeding, vol 1964. AIP Publishing, pp 020016-1–020016-6. https://doi.org/10.1063/1.5038298

  8. Chen H, Li G-D, Fan M, Gao Q, Hu J, Ao S, Wei C, Zou X (2017) Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M = Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sens Actuators B Chem 240:689

    Article  Google Scholar 

  9. Butee S, Kulkarni AR, Prakash O, Aiyar RPRC, Sudheendran K, James KCR (2010) RF and microwave dielectric properties of (Zn0.95M0.05)(2)TiO4 (M = Mn2+, Co2+, Ni2+ or Cu2+) ceramics. Mater Sci Eng B Adv Funct Solid State Mater 168:151–155

    Article  Google Scholar 

  10. Lu X, Bian W, Li Y, Zhu H, Fu Z, Zhang Q (2018) Influence of inverse spinel structured CuGa2O4 on microwave dielectric properties of normal spinel ZnGa2O4 ceramics. J Am Ceram Soc 101:1646–16541

    Article  Google Scholar 

  11. Zardkhoshoui AM, Davarani SSH (2019) Designing a flexible all-solid-state supercapacitor based on CuGa2O4 and FeP-rGO electrodes. J Alloys Compd 773:527–536

    Article  Google Scholar 

  12. Zhao J, Tian Y, Liu A, Song L, Zhao Z (2019) The NiO electrode materials in electrochemical capacitor: a review. Mater Sci Semicond Process 96:78

    Article  Google Scholar 

  13. Zhang S, Zhang J, Cao G, Wang Q, Hu J, Zhang P, Shao G (2018) Strong interplay between dopant and SnO2 in amorphous transparent (Sn,Nb)O2 anode with high conductivity in electrochemical cycling. J Alloys Compd 735:2401–2409

    Article  Google Scholar 

  14. Petrakovskii GA, Aleksandrov KS, Bezmaternikh LN, Aplesnin SS, Roessli B, Semadeni F, Amato A, Baines C, Bartolome J, Evangelisti M (2001) Spin-glass state in CuGa2O4. Phys Rev B 63:184425

    Article  Google Scholar 

  15. Biswas SK, Sarkar A, Pathak A, Pramanik P (2010) Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia. Talanta 81:1607–1612

    Article  Google Scholar 

  16. Gurunathan K, Baeg J, Lee S, Subramanian E, Moon S, Kong K (2008) Visible light active pristine and Fe3+ doped CuGa2O4 spinel photocatalysts for solar hydrogen production. Int J Hydrogen Energy 33:2646–2652

    Article  Google Scholar 

  17. Wei H, Chen Z, Wu Z, Cui W, Huang Y, Tang W (2017) Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy. AIP Adv 7:115216

    Article  Google Scholar 

  18. Gingasu D, Mindru I, Patron L, Marinescu G, Tuna F, Preda S, Calderon-Moreno JM, Andronescu C (2012) Synthesis of CuGa2O4 nanoparticles by precursor and self-propagating combustion methods. Ceram Int 38:6739–6751

    Article  Google Scholar 

  19. Knapp CE, Prassides ID, Sathasivam S, Parkin IP, Carmalt CJ (2014) Aerosol-assisted chemical vapour deposition of a copper gallium oxide spinel. ChemPlusChem 79:122–127

    Article  Google Scholar 

  20. Denisov VM, Denisova LT, Chumilina LG, Kirik SD (2013) High-temperature heat capacity of CuGa2O4. Phys Solid State 55:1340–1342

    Article  Google Scholar 

  21. Fenner LA, Wills AS, Bramwell ST, Dahlberg M, Schiffer P (2009) Zero-point entropy of the spinel spin glasses CuGa2O4 and CuAl2O4. J Phys Conf Ser 145:012029

    Article  Google Scholar 

  22. Li W, Ishikawa D, Hu J, Tatsuoka H (2014) Growth of MnSi1.7 layers on MnSi substrate by molten salt method. J Electron Mater 43:1487–1491

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D plan (Nos. 2016YFB0400600, 2016YFB0400601), the National Science Foundation of China (Nos. 61574026, 11675198, 11875097, 61774072), the Liaoning Provincial Natural Science Foundation of China (Nos. 201602453, 201602176), the China Postdoctoral Science Foundation Funded Project (No. 2016M591434) and the Dalian Science and Technology Innovation Fund (No. 2018J12GX060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Liang, H., Xia, X. et al. Preparation of high-quality CuGa2O4 film via annealing process of Cu/β-Ga2O3. J Mater Sci 54, 11111–11116 (2019). https://doi.org/10.1007/s10853-019-03666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03666-7