Journal of Materials Science

, Volume 54, Issue 14, pp 10153–10167 | Cite as

Superior suppression hydrodehalogenation performance of Pd nanoparticle decorated with metalloid-promoter GQDs for the selective hydrogenation of halonitrobenzenes

  • Chunshan LuEmail author
  • Haoke Ji
  • Qianwen Zhu
  • Xuejie Zhang
  • Hao Wang
  • Yebin Zhou
  • Qiangqiang Liu
  • Juanjuan Nie
  • Juntao Ying
  • Xiaonian LiEmail author
Chemical routes to materials


A novel Pd nanocomposites (Pd@GQDs) tightly surrounded by GQDs on the porous carbon sphere is fabricated for the application in the thermocatalytic fields. The samples were characterized by BET, UV–Vis, PL, XRD and TEM and evaluated on their catalytic selective hydrogenation performance. The results show that strong surface interaction between abundant surface groups of GQDs, especially –COO−1 group, and Pd particle induces and drives GQDs directional deposition around the Pd particle in the process of Pd@GQDs generation. In the Pd@GQDs cluster, the electron distribution of Pd particle is rearranged and Pd possesses electron-rich property. The metalloid-promoter GQDs act as an electron donor like various metal additives in multicomponent metal catalysts in the thermocatalytic fields. The Pd@GQDs generates electron-rich H other than electron-deficient H when hydrogen is adsorbed on it, which might prefer to attack nitro group in halonitrobenzene molecule, compared with C–X bond. The superior selectivity and stability for the hydrogenation of various halonitrobenzenes to corresponding haloanilines are obtained. GQDs demonstrate a great prospect of application as a nonmetallic electron promoter in thermocatalytic fields.



We gratefully thank for the project funded by National Natural Science Foundation of China (NSFC-21476207, 21476208 and 21473159), Natural Science Foundation of Zhejiang Province (LY17B060008) and Program from Science and Technology Department of Zhejiang Province (LGG18B060004).

Supplementary material

10853_2019_3610_MOESM1_ESM.docx (190 kb)
Supplementary material 1 (DOCX 190 kb)


  1. 1.
    Wang XD, Liang MH, Zhang JL, Wang Y (2007) Selective hydrogenation of aromatic chloronitro compounds. Curr Org Chem 11(3):299–314CrossRefGoogle Scholar
  2. 2.
    Shi WX, Wang XG, Shang XF, Zou XJ, Ding WZ, Lu XG (2017) High performance and active sites of a ceria-supported palladium catalyst for solvent-free chemoselective hydrogenation of nitroarenes. ChemCatChem 9:3743–3751CrossRefGoogle Scholar
  3. 3.
    Lian C, Liu H, Xiao C, Yang W, Zhang K, Liu Y, Wang Y (2012) Solvent-free selective hydrogenation of chloronitrobenzene to chloroaniline over a robust Pt/Fe3O4 catalyst. Chem Commun (Camb) 48:3124–3126CrossRefGoogle Scholar
  4. 4.
    Ma L, Chen S, Lu CS, Zhang QF, Li XN (2011) Highly selective hydrogenation of 3,4-dichloronitrobenzene over Pd/C catalysts without inhibitors. Catal Today 173:62–67CrossRefGoogle Scholar
  5. 5.
    Lyu JH, Lu CS, Ma L, Zhang QF, He XB, Li XN (2015) Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles. J Phys Chem C 118:2594–2601CrossRefGoogle Scholar
  6. 6.
    Li JY, Ma L, Li XN, Lu CS, Liu HZ (2005) Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. Ind Eng Chem Res 44:5478–5482CrossRefGoogle Scholar
  7. 7.
    Li X, Zhao S, Zhang W, Liu Y, Li R (2016) Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene. Dalton Trans 45:15595–15602CrossRefGoogle Scholar
  8. 8.
    Lu CS, Wang MJ, Feng ZL, Qi YN, Feng F, Ma L, Zhang QF, Li XN (2017) A phosphorus–carbon framework over activated carbon supported palladium nanoparticles for the chemoselective hydrogenation of parac-hloronitrobenzene. Catal Sci Technol 7:1581–1589CrossRefGoogle Scholar
  9. 9.
    Li F, Cao B, Ma R, Song HL, Song H (2015) Preparation of Pt-B/Al2O3 amorphous alloy catalysts via microemulsion methods and application into hydrogenation of m-chloronitrobenzene. Can J Chem Eng 94:89–93CrossRefGoogle Scholar
  10. 10.
    Cárdenas-Lizana F, Gómez-Quero S, Hugon A, Delannoy L, Louis C, Keane M (2009) Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J Catal 262:235–243CrossRefGoogle Scholar
  11. 11.
    Mistri R, Llorca J, Ray BC, Gayen A (2013) Pd0.01Ru0.01Ce0.98O2-delta A highly active and selective catalyst for the liquid phase hydrogenation of p-chloronitrobenzene under ambient conditions. J Mol Catal A Chem 376:111–119CrossRefGoogle Scholar
  12. 12.
    Xu XS, Li XQ, Gu HZ, Huang ZB, Yan XH (2012) A highly active and chemoselective assembled Pt/C (Fe) catalyst for hydrogenation of o-chloronitrobenzene. Appl Catal A Gen 429:429–430Google Scholar
  13. 13.
    Li X, Wang Y, Li L, Huang W, Xiao Z, Wu P, Zhao W, Guo W, Jiang P, Liang M (2017) Deficient copper decorated platinum nanoparticles for selective hydrogenation of chloronitrobenzene. J Mater Chem A 5:11294–11300CrossRefGoogle Scholar
  14. 14.
    Xu DQ, Hu ZY, Li WW, Luo SP, Xu AY (2005) Hydrogenation in ionic liquids: An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines. J Mol Catal A Chem 235:137–142CrossRefGoogle Scholar
  15. 15.
    Li H, Xu Y, Yang HF, Zhang F, Li HX (2009) Ni-B amorphous alloy deposited on an aminopropyl and methyl co-functionalized SBA-15 as a highly active catalyst for chloronitrobenzene hydrogenation. J Mol Catal A Chem 307:105–114CrossRefGoogle Scholar
  16. 16.
    Li F, Ma R, Cao B, Liang JR, Ren QM, Song H (2016) Effect of Co-B supporting methods on the hydrogenation of m-chloronitrobenzene over Co-B CNTs amorphous alloy catalysts. Appl Catal A Gen 514:248–252CrossRefGoogle Scholar
  17. 17.
    Li F, Zhu WX, Liang JR, Son H, Wang KL, Li CQ (2018) Carbon nanotube-supported amorphous Co–B for hydrogenation of m-chloronitrobenzene. J Chem Res 42:170–174CrossRefGoogle Scholar
  18. 18.
    Wang X, Li YW (2016) Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived co-based catalysts. J Mol Catal A Chem 420:56–65CrossRefGoogle Scholar
  19. 19.
    Yang F, Cao Y, Chen Z, Hou LQ, Li YF (2018) Large-scale preparation of B/N co-doped graphene-like carbon as an efficient metal-free catalyst for reduction of nitroarenes. New J Chem 42:2718–2725CrossRefGoogle Scholar
  20. 20.
    Zhang P, Song XD, Yu C, Gui JZ, Qiu JS (2018) Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene. Acs Sustain Chem Eng 5:7481–7485CrossRefGoogle Scholar
  21. 21.
    Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179–6212CrossRefGoogle Scholar
  22. 22.
    Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636CrossRefGoogle Scholar
  23. 23.
    Sun HJ, Wu L, Wei WL, Qu XG (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442CrossRefGoogle Scholar
  24. 24.
    Zhang ZP, Zhang J, Chen N, Qu LG (2012) Graphene quantum dots an emerging material for energy related applications and beyond. Energy Environ Sci 5:8869–8890CrossRefGoogle Scholar
  25. 25.
    Zhu SJ, Song YB, Wang J, Wan H, Zhang Y, Ning Y, Yang B (2017) Photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface/edge state. Nano Today 13:10–14CrossRefGoogle Scholar
  26. 26.
    Bak S, Kim DY, Lee HY (2016) Graphene quantum dots and their possible energy applications. Curr Appl Phys 16:1192–1201CrossRefGoogle Scholar
  27. 27.
    Du Y, Guo SJ (2016) Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8:2532–2543CrossRefGoogle Scholar
  28. 28.
    Li XM, Rui MC, Song JZ, Shen ZH, Zeng HB (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947CrossRefGoogle Scholar
  29. 29.
    Li KH, Liu W, Ni Y, Li DP, Lin DM, Su ZQ, Wei G (2017) Technical synthesis and biomedical applications of graphene quantum dots. J Mater Chem B 5:4811–4826CrossRefGoogle Scholar
  30. 30.
    Chen WF, Lv G, Hu WM, Li DJ, Chen SN, Dai ZX (2018) Synthesis and applications of graphene quantum dots a review. Nanotechnol Rev 7:157–185CrossRefGoogle Scholar
  31. 31.
    Mitchell B, Bradley SJ, Nann T (2014) Graphene quantum dots. Part Part Syst Char 31:415–428CrossRefGoogle Scholar
  32. 32.
    He G, Song Y, Liu K, Walter A, Chen S, Chen SW (2013) Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots. Acs Catal 3:831–838CrossRefGoogle Scholar
  33. 33.
    Zeng ZP, Xiao FX, Phan H, Chen SF, Yu ZZ, Wang R, Nguyenc TQ, Thatt T, Tan Y (2018) Unraveling the cooperative synergy of zero-dimensional graphene quantum dots and metal nanocrystals enabled by layer-by-layer assembly. J Mater Chem A 6:1700–1713CrossRefGoogle Scholar
  34. 34.
    Naghshbandi Z, Arsalani N, Sadegh ZM, Geckeler KE (2018) A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4(M = Ni, Co) nanocomposites for catalytic application. Appl Surf Sci 443:484–491CrossRefGoogle Scholar
  35. 35.
    Yang TY, Ling HJ, Lamonier JF, Jaroniec M, Huang J, Monteiro MJ, Liu J (2016) A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Mater 8:e240CrossRefGoogle Scholar
  36. 36.
    Liu J, Yang TY, Wang DW, Lu GQ, Zhao DY, Qiao SZ (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun 4:2798–2804CrossRefGoogle Scholar
  37. 37.
    Choma J, Jamioła D, Augustynek K, Marszewski M, Gao M, Jaroniec M (2012) New opportunities in Stober synthesis: preparation of microporous and mesoporous carbon spheres. J Mater Chem 22:12636–12642CrossRefGoogle Scholar
  38. 38.
    Dong YQ, Shao JW, Chen CQ, Li H, Wang RX, Chi YW, Lin XM, Chen GN (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743CrossRefGoogle Scholar
  39. 39.
    Xi J, Xie C, Zhang Y, Wang L, Xiao J, Duan X, Ren J, Xiao F, Wang S (2016) Pd nanoparticles decorated N-doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Appl Mater Interfaces 8:22563–22573CrossRefGoogle Scholar
  40. 40.
    Jiang WD, Xu B, Xiang Z, Liu XQ, Liu F (2016) Preparation and reactivity of UV light-reduced Pd/α-Fe2O3 catalyst towards the hydrogenation of o-chloronitrobenzene. Appl Catal A Gen 520:65–72CrossRefGoogle Scholar
  41. 41.
    Ma JW, Habrioux A, Pisarek M, Adam Lewera, Nicolas AV (2013) Induced electronic modification of Pt nanoparticles deposited onto graphitic domains of carbon materials by UV irradiation. Electrochem Commun 29:12–16CrossRefGoogle Scholar
  42. 42.
    Lu YM, Zhu HZ, Li WG, Hu B, Yu SH (2013) Size-controllable palladium nanoparticles immobilized on carbon nanospheres for nitroaromatic hydrogenation. J Mater Chem A 1:3783–3788CrossRefGoogle Scholar
  43. 43.
    Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two- color graphene quantum dots. Adv Funct Mater 22:2971–2979CrossRefGoogle Scholar
  44. 44.
    Tressaud A, Touhara H, Khaiboun S, Watanabe N, Anorg Z (2010) X-ray photoelectron spectroscopy of palladium fluorides†. Allg Chem 540:291–299CrossRefGoogle Scholar
  45. 45.
    Bird RJ, Swift P (1980) Energy calibration in electron spectroscopy and the re-determination of some reference electron binding energies. J Electron Spectrosc 21:227–240CrossRefGoogle Scholar
  46. 46.
    Kim KS, Gossmann AF, Winograd N (1974) X-ray photoelectron spectroscopic studies of palladium oxides and the palladium–oxygen electrode. Surf Sci 46:625–643CrossRefGoogle Scholar
  47. 47.
    Liu RH, Huang H, Li HT, Liu Y, Zhong J, Li YY, Zhang S, Kang ZH (2014) Metal nanoparticle carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. Acs Catal 4:328–336CrossRefGoogle Scholar
  48. 48.
    Lu CS, Lv JH, Ma L, Zhang QF, Feng F, Li XN (2012) Highly selective hydrogenation of halonitroaromatics to aromatic haloamines by ligand modified Ni-based catalysts. Chin Chem Lett 23:545–548CrossRefGoogle Scholar
  49. 49.
    Liu R, Yang R, Qu CJ, Mao CH, Hu Y, Li JJ, Qu LB (2017) Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum. Sens Actuators B Chem 241:644–651CrossRefGoogle Scholar
  50. 50.
    Cho HH, Yang H, Kang DJ, Kim BJ (2015) Surface engineering of graphene quantum dots and their applications as efficient surfactants. ACS Appl Mater Interfaces 7:8615–8621CrossRefGoogle Scholar
  51. 51.
    Yang Y, Liu Q, Liu Y, Cui J, Liu H, Wang P, Li Y, Chen L, Zhao Z, Dong Y (2017) A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens Bioelectron 90:31–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of TechnologyHangzhouChina

Personalised recommendations