Journal of Materials Science

, Volume 54, Issue 14, pp 10371–10378 | Cite as

Improved film morphology of (CH3NH3)3Bi2I9 via cation displacement approach for lead-free perovskite solar cells

  • Fengzhu Li
  • Haochen Fan
  • Pengcheng Wang
  • Xiangjun LiEmail author
  • Yanlin SongEmail author
  • Ke-Jian JiangEmail author
Energy materials


Methylammonium bismuth iodide (MA3Bi2I9) has been recently investigated as a light absorber in lead-free perovskite solar cells. However, the MA3Bi2I9 film fabricated via conventional one-step spin coating methods usually has poor surface morphology, limiting the device performance. Herein, a cation displacement approach was employed for the fabrication of MA3Bi2I9 film, where (CH3CH2CH2NH3)3Bi2I9 (PA3Bi2I9) film was first deposited from a solution containing CH3CH2CH2NH3I and BiI3 and then transformed into MA3Bi2I9 film in a methylamine atmosphere. With the technique, the MA3Bi2I9 film was realized with smooth, uniform, and compact surface morphology. Using the MA3Bi2I9 film as a light absorber, a mesoporous photovoltaic device was fabricated with a power conversion efficiency of 0.33%, which is about two times higher than the value (0.15%) obtained for the one-step spin coating MA3Bi2I9 device. Moreover, the facile film fabrication strategy utilized in this work paves the way for high reproducibility of lead-free organic–inorganic halide films and devices.



This work was supported by the National Nature Science Foundation of China (Grant Nos. 61874123, 21572235), the National Key R and D Program of China (Grant No. 2018YFA0208501), and the “Strategic Priority Research Program” of Chinese Academy of Sciences (Grant No. XDA09020000).

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Supplementary material

10853_2019_3582_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2152 kb)


  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRefGoogle Scholar
  2. 2.
    Kim HS, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Gratzal M (2012) Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRefGoogle Scholar
  3. 3.
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480CrossRefGoogle Scholar
  4. 4.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647CrossRefGoogle Scholar
  5. 5.
    Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRefGoogle Scholar
  6. 6.
    Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y, Huang J (2014) Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26(37):6503–6509CrossRefGoogle Scholar
  7. 7.
    Huang JH, Jiang KJ, Cui XP, Zhang QQ, Gao M, Su MJ, Yang LM, Song YL (2015) Direct conversion of CH3NH3PbI3 from electrodeposited PbO for highly efficient planar perovskite solar cells. Sci Rep 5:15889CrossRefGoogle Scholar
  8. 8.
    NREL, Best Research-Cell Efficiences chart;
  9. 9.
    McClure ET, Ball MR, Windl W, Woodward PM (2016) Cs2AgBiX6 (X = Br, CI): new visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater 28(5):1348–1354CrossRefGoogle Scholar
  10. 10.
    Babayigit A, Ethirajan A, Muller M, Conings B (2016) Toxicity of organometal halide perovskite solar cells. Nat Mater 15:247–251CrossRefGoogle Scholar
  11. 11.
    Hailegnaw B, Kirmayer S, Edri E, Hodes G, Cahen D (2015) Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J Phys Chem Lett 6(9):1543–1547CrossRefGoogle Scholar
  12. 12.
    Aristidou N, Sanchez MI, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque SA (2015) The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew Chem Int Ed 127(28):8326–8330CrossRefGoogle Scholar
  13. 13.
    Park B-W, Philippe B, Zhang X, Rensmo H, Boschloo G, Johansson EMJ (2015) Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv Mater 27(43):6806–6813CrossRefGoogle Scholar
  14. 14.
    Eckhardt K, Bon V, Getzschmann J, Grothe J, Wisser FM, Kaskel S (2016) Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic-inorganic material as a potential absorber for photovoltaics. Chem Commun 52(14):3058–3060CrossRefGoogle Scholar
  15. 15.
    Hoye RLZ, Brandt RE, Osherov A, Stevanovic V, Stranks SD, Wilson MWB, Kim H, Akey AJ, Perkins JD, Kurchin RC, Poindexter JR, Wang EN, Bawendi MG, Bulovic V, Buonassisi T (2016) Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chem Eur J 22(8):2605–2610CrossRefGoogle Scholar
  16. 16.
    Abulikemu M, Ould-Chikh S, Miao X, Alarousu E, Murali B, Ndjawa GON, Barbe J, Labban AE, Amassian A, Gobbo SD (2016) Optoelectronic and photovoltaic properties of the ir-stable organohalide semiconductor (CH3NH3)3Bi2I9. J Mater Chem A 4(32):12504–12515CrossRefGoogle Scholar
  17. 17.
    Lyu M, Yun J-H, Cai M, Jiao Y, Bernhardt PV, Zhang M, Wang Q, Du A, Wang H, Liu G, Wang L (2016) Organic-inorganic bismuth (III)-based material: a lead-free, air-stable and solution processable light-absorber beyond organolead perovskites. Nano Res 9(3):692–702CrossRefGoogle Scholar
  18. 18.
    Öz S, Hebig JC, Jung E, Singh T, Lepcha A, Olthof S, Jan F, Gao Y, German R, Loosdrecht PHM, Meerholz K, Kirchartz T, Mathur S (2016) Zero dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Sol Energy Mater Sol Cells 158:195–201CrossRefGoogle Scholar
  19. 19.
    Singh T, Kulkarni A, Ikegami M, Miyasaka T (2016) Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl Mater Interfaces 8(23):14542–14547CrossRefGoogle Scholar
  20. 20.
    Zhang X, Wu G, Gu Z, Guo B, Liu W, Yang S, Ye T, Chen C, Tu W, Chen H (2016) Active-layer evolution and efficiency improvement of (CH3NH3)3Bi2I9-based solar cell on TiO2-deposited ITO substrate. Nano Res 9(10):2921–2930CrossRefGoogle Scholar
  21. 21.
    Lehner AJ, Fabini DH, Evans HA, Hebert CA, Smock SR, Hu J, Wang H, Zwanziger JW, Chabinyc ML, Seshadri R (2015) Crystal and electronic structures of complex bismuth iodides A3Bi2I9 (A = K, Rb, Cs) related to perovskite: aiding the rational design of photovoltaics. Chem Mater 27(20):7137–7148CrossRefGoogle Scholar
  22. 22.
    Jain SM, Phuyal D, Davies ML, Li M, Philippe B, Castro CD, Qiu Z, Kim J, Watson T, Tsoi WC, Karis O, Rensmo H, Boschloo G, Edvinsson T, Durran JR (2018) An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 49:614–624CrossRefGoogle Scholar
  23. 23.
    Shin SS, Baena JPC, Kurchin RC, Polizzotti A, Yoo JJ, Wieghold S, Bawendi MG, Buonassisi T (2018) Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics. Chem Mater 30(2):336–343CrossRefGoogle Scholar
  24. 24.
    Ran C, Wu Z, Xi J, Yuan F, Dong H, Lei T, He X, Hou X (2017) Construction of compact methylammonium bismuth iodide film promoting lead-free inverted planar heterojunction organohalide solar cells with open-circuit voltage over 0.8 V. J Phys Chem Lett 8(2):394–400CrossRefGoogle Scholar
  25. 25.
    Wang H, Tian J, Jiang K, Zhang Y, Fan H, Huang J, Yang LM, Guan Y, Song Y (2017) Fabrication of methylammonium bismuth iodide through interdiffusion of solution-processed BiI3/CH3NH3I stacking layers. RSC Adv 7(69):43826–43830CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Li X, Xia X, Wang Z, Huang Z, Lei B, Gao Y (2017) High-quality (CH3NH3)3Bi2I9 film-based solar cells: pushing efficiency up to 1.64%. J Phys Chem Lett 8(17):4300–4307CrossRefGoogle Scholar
  27. 27.
    Zhou Z, Wang Z, Zhou Y, Pang S, Wang D, Xu H, Liu Z, Padture NP, Cui G (2015) Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew Chem Int Ed 54(33):9705–9709CrossRefGoogle Scholar
  28. 28.
    Li F, Zhang Y, Jiang K-J, Zhang C, Huang J-H, Wang H, Fan H, Wang P, Chen Y, Zhao W, Li X, Yang L-M, Song Y, Li Y (2018) A novel strategy for scalable high-efficiency planar perovskite solar cells with new precursors and cation displacement approach. Adv Mater 30(44):1804454CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Li F, Jiang K-J, Huang J-H, Wang H, Fan H, Wang P, Liu C-M, Zhang L-P, Song Y (2018) From 2D to 3D: a facile and effective procedure for fabrication of planar CH3NH3PbI3 perovskite solar cells. J Mater Chem A 6(37):17867–17873CrossRefGoogle Scholar
  30. 30.
    Zhou Y, Yang M, Pang S, Zhu K, Padture NP (2016) Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement. J Am Chem Soc 138(17):5535–5538CrossRefGoogle Scholar
  31. 31.
    Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Soek SI (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903CrossRefGoogle Scholar
  32. 32.
    Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RPH, Kanatzidis MG (2015) Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc 137(35):11445–11452CrossRefGoogle Scholar
  33. 33.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Stat Sol 15:627–637CrossRefGoogle Scholar
  34. 34.
    Nie W, Tsai H, Asadpour R, Blancon J-C, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang H-L, Mohite AD (2015) High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221):522–525CrossRefGoogle Scholar
  35. 35.
    Lv S, Song Y, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Wang S, Xiao Y, Luo Y, Li D, Li X, Meng Q (2015) Simple triphenylamine-based hole-transporting materials for perovskite solar cells. Electrochim Acta 182:733–741CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Green Printing, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations