Skip to main content
Log in

A doxorubicin and vincristine drug release system based on magnetic PLGA microspheres prepared by coaxial electrospray

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we demonstrated a novel doxorubicin and vincristine-loaded PLGA magnetic microspheres prepared by coaxial electrospray, as a drug delivery system for osteosarcoma treatment. The results showed that microspheres had an minimum mean diameter of 0.32 ± 0.25 μm and exhibited a spherical shape. The particle size distribution changed obviously with the different dosing ways. The entrapment efficiency was found to be 65.72, 73.6 and 74.14% for different microspheres. In vitro degradation research showed that circular pores appeared gradually on the surface of particles with the increase in time, which accelerated the degradation of microspheres. CCK-8 test showed that the Fe3O4@PLGA microspheres without drug loading had almost no side effects, the cytotoxicity of Fe3O4@P/(V + D), Fe3O4@(P + D)/V and Fe3O4@(P + V)/D microspheres increased in turn, and Fe3O4@(P + V)/D microspheres with minimum particle size could significantly arrest the growth of osteosarcoma saos-2 cells. Therefore, the drug-loaded magnetic microspheres have good killing effect on osteosarcoma cell lines, which can be used as an ideal targeting treatment for postoperative adjuvant therapy of osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. American Cancer Society (2016) Cancer facts & figures 2016, cancer facts fig. 2016., pp 1–9. https://doi.org/10.1097/01.NNR.0000289503.22414.79

    Google Scholar 

  2. American Cancer Society (2018) Cancer facts & figures 2018. American Cancer Society, Atlanta. https://doi.org/10.3322/caac.21442

    Google Scholar 

  3. Chen W, Sun K, Zheng R, Zeng H, Zhang S, Xia C, Yang Z, Li H, Zou X, He J (2018) Cancer incidence and mortality in China, 2014. Chin J Cancer Res 30(2018):1–12. https://doi.org/10.21147/j.issn.1000-9604.2018.01.01

    Article  Google Scholar 

  4. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China. CA Cancer J Clin 66:115–132. https://doi.org/10.3322/caac.21338

    Article  Google Scholar 

  5. Unni KK, Inwards CY, Dahlin DC (1996) Dahlin’s bone tumors: general aspects and data on 10,165 cases. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  6. Hussien NA, Işıklan N, Türk M (2018) Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel. J Mater Chem Phys 211:479–488. https://doi.org/10.1016/J.MATCHEMPHYS.2018.03.015

    Article  Google Scholar 

  7. Ji RC (2014) Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. J Cancer Lett 346:6–16. https://doi.org/10.1016/j.canlet.2013.12.001

    Article  Google Scholar 

  8. Ahmad H, Nurunnabi M, Rahman MM, Kumar K, Tauer K, Minami H, Gafur MA (2014) Magnetically doped multi stimuli-responsive hydrogel microspheres with IPN structure and application in dye removal. J Colloids Surf A Physicochem Eng Asp 459:39–47. https://doi.org/10.1016/j.colsurfa.2014.06.038

    Article  Google Scholar 

  9. Klinger D, Landfester K (2012) Stimuli-responsive microgels for the loading and release of functional compounds: fundamental concepts and applications. J Polym 53:5209–5231. https://doi.org/10.1016/j.polymer.2012.08.053

    Article  Google Scholar 

  10. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. J Prog Polym Sci 35:174–211. https://doi.org/10.1016/j.progpolymsci.2009.10.004

    Article  Google Scholar 

  11. Sun X, Shi J, Xu X, Cao S (2013) Chitosan coated alginate/poly(N-isopropylacrylamide) beads for dual responsive drug delivery. J Int J Biol Macromol 59:273–281. https://doi.org/10.1016/j.ijbiomac.2013.04.066

    Article  Google Scholar 

  12. Jaber J, Mohsen E (2013) Synthesis of Fe3O4@silica/poly(N-isopropylacrylamide) as a novel thermo-responsive system for controlled release of H3PMo12O40 nano drug in AC magnetic field. J Colloids Surf B Biointerfaces 102:265–272. https://doi.org/10.1016/j.colsurfb.2012.08.024

    Article  Google Scholar 

  13. Fang K, Song L, Gu Z, Yang F, Zhang Y, Gu N (2015) Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. J Colloids Surf B Biointerfaces 136:712–720. https://doi.org/10.1016/j.colsurfb.2015.10.014

    Article  Google Scholar 

  14. Lin X, Yang H, Su L, Yang Z, Tang X (2018) Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres. J Drug Deliv Sci Technol 45:346–356. https://doi.org/10.1016/j.jddst.2018.03.024

    Article  Google Scholar 

  15. Malik SA, Ng WH, Bowen J, Tang J, Gomez A, Kenyon AJ, Day RM (2016) Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies. J Colloid Interface Sci 467:220–229. https://doi.org/10.1016/j.jcis.2016.01.021

    Article  Google Scholar 

  16. Kuboyama T, Yokoshima S, Tokuyama H, Fukuyama T (2004) Stereocontrolled total synthesis of (+)-Vincristine. J Proc Natl Acad Sci USA 101:11966–11970. https://doi.org/10.1073/pnas.0401323101

    Article  Google Scholar 

  17. Jordan M (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. J Curr Med Chem Agents 2:1–17. https://doi.org/10.2174/1568011023354290

    Article  Google Scholar 

  18. Silverman JA, Deitcher SR (2013) Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. J Cancer Chemotherapy Pharmacol 71:555–564. https://doi.org/10.1007/s00280-012-2042-4

    Article  Google Scholar 

  19. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x

    Article  Google Scholar 

  20. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. J Mol Pharmacol 45:649–656

    Google Scholar 

  21. Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. J Chem Biol 17:421–433. https://doi.org/10.1016/j.chembiol.2010.04.012

    Article  Google Scholar 

  22. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65:157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x

    Article  Google Scholar 

  23. Jones SE, Durie BGM, Salmon SE (1975) Combination chemotherapy with adriamycin and cyclophosphamide for advance breast cancer. J Cancer 36:90–97. https://doi.org/10.1002/1097-0142(197507)36:1%3c90:AID-CNCR2820360104%3e3.0.CO;2-H

    Article  Google Scholar 

  24. Suryanarayan K, Natkunam Y, Berry G, Bangs CD, Cherry A, Dahl G (2001) Modified cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone therapy for postransplantation lymphoproliferative disease in pediatric patients undergoing solid organ transplantation. J Pediatr Hematol Off J Am Soc Pediatr Hematol 23:452–455. https://doi.org/10.1097/00043426-200110000-00012

    Article  Google Scholar 

  25. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large -B-cell lymphoma. J N Engl J Med 346:235–242. https://doi.org/10.1056/NEJMoa011795

    Article  Google Scholar 

  26. Engert A, Franklin J, Eich HT, Brillant C, Sehlen S, Cartoni C, Herrmann R, Pfreundschuh M, Sieber M, Tesch H, Franke A, Koch P, De Wit M, Paulus U, Hasenclever D, Loeffler M, Müller RP, Müller-Hermelink HK, Dühmke E, Diehl V (2007) Two cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine plus extended-field radiotherapy is superior to radiotherapy alone in early favorable Hodgkin’s lymphoma: final results of the GHSG HD7 trial. J Clin Oncol 25:3495–3502. https://doi.org/10.1200/JCO.2006.07.0482

    Article  Google Scholar 

  27. Mei F, Chen DR (2007) Investigation of compound jet electrospray: particle encapsulation. J Phys Fluids. https://doi.org/10.1063/1.2775976

    Google Scholar 

  28. Xie J, Lim LK, Phua Y, Hua J, Wang CH (2006) Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interface Sci 302:103–112. https://doi.org/10.1016/j.jcis.2006.06.037

    Article  Google Scholar 

  29. Bai J, Li Y, Li M, Gao J, Zhang X, Wang S, Zhang C, Yang Q (2008) A novel approach to prepare AgCl/PVP nanocomposite microspheres via electrospinning with sol-gel method. J Colloids Surf A Physicochem Eng Asp 318:259–262. https://doi.org/10.1016/j.colsurfa.2007.12.055

    Article  Google Scholar 

  30. Zhang S, Kawakami K (2010) One-step preparation of chitosan solid nanoparticles by electrospray deposition. J Int J Pharm 397:211–217. https://doi.org/10.1016/j.ijpharm.2010.07.007

    Article  Google Scholar 

  31. Sander C, Nielsen HM, Jacobsen J (2013) Buccal delivery of metformin: TR146 cell culture model evaluating the use of bioadhesive chitosan discs for drug permeability enhancement. J Int J Pharm 458:254–261. https://doi.org/10.1016/j.ijpharm.2013.10.026

    Article  Google Scholar 

  32. Zauner W, Farrow NA, Haines AM (2001) In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J J Control Release. 71:39–51. https://doi.org/10.1016/S0168-3659(00)00358-8

    Article  Google Scholar 

  33. Fang H, Ma CY, Wan TL, Zhang M, Shi WH (2007) Fabrication of monodisperse magnetic Fe3O4–SiO2 nanocomposites with core-shell structures. J Phys Chem C 111:1065–1070. https://doi.org/10.1021/jp0672048

    Article  Google Scholar 

  34. Wang X, Jing X, Zhang X, Liu Q, Liu J, Song D, Wang J, Liu L (2016) A versatile platform of magnetic microspheres loaded with dual-anticancer drugs for drug release. J Mater Chem Phys 177:213–219. https://doi.org/10.1016/j.matchemphys.2016.04.021

    Article  Google Scholar 

  35. Seju U, Kumar A, Sawant KK (2011) Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. J Acta Biomater 7:4169–4176. https://doi.org/10.1016/j.actbio.2011.07.025

    Article  Google Scholar 

  36. Rana S, Gallo A, Srivastava RS, Misra RDK (2007) On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics. J Acta Biomater 3:233–242. https://doi.org/10.1016/j.actbio.2006.10.006

    Article  Google Scholar 

  37. Mosafer J, Abnous K, Tafaghodi M, Jafarzadeh H, Ramezani M (2017) Preparation and characterization of uniform-sized PLGA nanospheres encapsulated with oleic acid-coated magnetic-Fe3O4 nanoparticles for simultaneous diagnostic and therapeutic applications. J Colloids Surf A Physicochem Eng Asp 514:146–154. https://doi.org/10.1016/j.colsurfa.2016.11.056

    Article  Google Scholar 

  38. Mosafer J, Teymouri M, Abnous K, Tafaghodi M, Ramezani M (2017) Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. J Mater Sci Eng C 72:123–133. https://doi.org/10.1016/j.msec.2016.11.053

    Article  Google Scholar 

  39. Lee DK, Kang YS, Lee CS, Stroeve P (2002) Structure and characterization of nanocomposite Langmuir–Blodgett films of poly (maleic monoester)/Fe3O4 nanoparticle complexes. J Phys Chem B 106:7267–7271. https://doi.org/10.1021/jp014446t

    Article  Google Scholar 

  40. Huang CL, Hsieh WJ, Lin CW, Yang HW, Wang CK (2018) Multifunctional liposomal drug delivery with dual probes of magnetic resonance and fluorescence imaging. J Ceram Int 99:1–9. https://doi.org/10.1016/j.ceramint.2018.04.034

    Google Scholar 

  41. Hyun DC (2015) Magnetically-controlled, pulsatile drug release from poly(ε-caprolactone) (PCL) particles with hollow interiors. J Polym 74:159–165. https://doi.org/10.1016/j.polymer.2015.07.038

    Article  Google Scholar 

  42. Zhang P, Ling G, Sun J, Zhang T, Yuan Y, Sun Y, Wang Z, He Z (2011) Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. J Biomater 32:5524–5533. https://doi.org/10.1016/j.biomaterials.2011.04.022

    Article  Google Scholar 

  43. Ling G, Zhang P, Zhang W, Sun J, Meng X, Qin Y, Deng Y, He Z (2010) Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. J Control Release 148:241–248. https://doi.org/10.1016/j.jconrel.2010.08.010

    Article  Google Scholar 

  44. Rescignano N, Tarpani L, Romani A, Bicchi I, Mattioli S, Emiliani C, Torre L, Kenny JM, Martino S, Latterini L, Armentano I (2016) In-vitro degradation of PLGA nanoparticles in aqueous medium and in stem cell cultures by monitoring the cargo fluorescence spectrum. J Polym Degrad Stab 134:296–304. https://doi.org/10.1016/j.polymdegradstab.2016.10.017

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Jilin Province Health Project 2018 (3D517EB73428) and Key Project of Science and Technology Development Plan, Jilin Province of China (20170204042GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Zhao, H., Yao, J. et al. A doxorubicin and vincristine drug release system based on magnetic PLGA microspheres prepared by coaxial electrospray. J Mater Sci 54, 9689–9706 (2019). https://doi.org/10.1007/s10853-019-03575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03575-9

Navigation