Journal of Materials Science

, Volume 54, Issue 13, pp 9456–9465 | Cite as

Surface modification of TiO2 for the preparation of full-dull polyamide-6 polymers

  • Yu-ting Yang
  • Chun-wang YiEmail author
Chemical routes to materials


In this study, a novel surface modification approach for preparation of nanoscale titanium dioxide using aluminate coupling agent was developed. By optimizing the adding content of aluminate coupling agent and the reaction temperature, modified titanium dioxide (A-TiO2) particles with a minimum Z-average size of 32 nm and a narrow PDI of 0.214 were obtained. Further tests revealed that A-TiO2 was super-hydrophobic with water contact angle of 151.39°. Moreover, the dispersion behaviors and morphologies of TiO2 and A-TiO2 particles in different solvents were further investigated. The results indicated that A-TiO2 could be well dispersed in hot liquid caprolactam, making it suitable for preparing full-dull polyamide-6 polymers.



This project was financially supported by the National Key Research Program of China (Grant No. 2016YFB0302702), the Scientific Research Foundation of Hunan Provincial Education Department (Grant No. 17A126), and the Open Foundation of National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources (Grant No. KF201804).


  1. 1.
    Singh R, Kumar R, Mascolo I, Modano M (2018) On the applicability of composite PA6–TiO2 filaments for the rapid prototyping of innovative materials and structures. Compos B Eng 143:132–140. CrossRefGoogle Scholar
  2. 2.
    Rastar A, Yazdanshenas ME, Rashidi A, Bidoki SM (2017) Estimation and prediction of optical properties of PA6/TiO2 nanocomposites. Arabian J Chem 10:S219–S224. CrossRefGoogle Scholar
  3. 3.
    van Driel BA, Kooyman PJ, van den Berg KJ, Schmidt-Ott A, Dik J (2016) A quick assessment of the photocatalytic activity of TiO2 pigments—from lab to conservation studio! Microchem J 126:162–171. CrossRefGoogle Scholar
  4. 4.
    Tian C (2018) Internal influences of hydrolysis conditions on rutile TiO2 pigment production via short sulfate process. Mater Res Bull 103:83–88. CrossRefGoogle Scholar
  5. 5.
    Chen Y, Yu H, Yi L, Liu Y, Cao L, Cao K, Liu Y, Zhao W, Qi T (2018) Preparation of ground calcium carbonate-based TiO2 pigment by a two-step coating method. Powder Technol 325:568–575. CrossRefGoogle Scholar
  6. 6.
    Zama I, Martelli C, Gorni G (2017) Preparation of TiO2 paste starting from organic colloidal suspension for semi-transparent DSSC photo-anode application. Mater Sci Semicond Process 61:137–144. CrossRefGoogle Scholar
  7. 7.
    Zhang H, Zhu H (2012) Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric. Appl Surf Sci 258(24):10034–10041. CrossRefGoogle Scholar
  8. 8.
    Munawar MA, Schubert DW, Khan SM, Rehman MAU, Gull N, Islam A, Sabir A, Shafiq M, Haider B, Azam M, Khan SU, Voigt MM (2018) Investigation of functional, physical, mechanical and thermal properties of TiO2 embedded polyester hybrid composites: a design of experiment (DoE) study. Prog Nat Sci Mater Int 28(3):266–274. CrossRefGoogle Scholar
  9. 9.
    Sullalti S, Totaro G, Askanian H, Celli A, Marchese P, Verney V, Commereuc S (2016) Photodegradation of TiO2 composites based on polyesters. J Photochem Photobiol A 321:275–283. CrossRefGoogle Scholar
  10. 10.
    Zhang H, Li X, Han B, Wu H, Mao N (2018) Simultaneous reactive dyeing and surface modification of polyamide fabric with TiO2 precursor finish using a one-step hydrothermal process. Text Res J 88(22):2611–2623. CrossRefGoogle Scholar
  11. 11.
    Ali I, Al-Hammadi SA, Saleh TA (2018) Simultaneous sorption of dyes and toxic metals from waters using synthesized titania-incorporated polyamide. J Mol Liq 269:564–571. CrossRefGoogle Scholar
  12. 12.
    Pellegrino F, Pellutiè L, Sordello F, Minero C, Ortel E, Hodoroaba V-D, Maurino V (2017) Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl Catal B 216:80–87. CrossRefGoogle Scholar
  13. 13.
    Miao Y, Zhang G (2012) Study about characteristics of FTIR and XRD for corn stalk surface with KH-560 treatment. Energy Proc 16:1135–1140. CrossRefGoogle Scholar
  14. 14.
    Wan W, Yu D, Xie Y, Guo X, Zhou W, Cao J (2006) Effects of nanoparticle treatment on the crystallization behavior and mechanical properties of polypropylene/calcium carbonate nanocomposites. J Appl Polym Sci 102(4):3480–3488. CrossRefGoogle Scholar
  15. 15.
    Arslan C, Dogan M (2018) The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites. Compos B Eng 146:145–154. CrossRefGoogle Scholar
  16. 16.
    Ma F, Chen S, Liu P, Geng F, Li W, Liu X, He D, Pan D (2016) Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid. Mater Sci Eng C 62:407–413. CrossRefGoogle Scholar
  17. 17.
    Rusu G, Rusu E, Zaltariov MF (2016) Anionic nylon 612/TiO2 composite materials: synthesis, characterization and properties. J Inorg Organomet Polym Mater 27(1):225–248. CrossRefGoogle Scholar
  18. 18.
    Zhang W, Chen T, Chen W (1988) Properties and application of calcium carbonate modified by aluminate coupling agent. China Plast 1:25–36Google Scholar
  19. 19.
    Li H, Qu M, Sun Z, He J, Zhou A (2013) Facile fabrication of a hierarchical superhydrophobic coating with aluminate coupling agent modified kaolin. J Nanomater. Google Scholar
  20. 20.
    Peng S, Lu P, Yi C, Wei Z, Xi W (2018) A novel synthetic strategy for preparing semi-aromatic components modified polyamide 6 polymer. J Polym Sci Part A Polym Chem 56(9):959–967CrossRefGoogle Scholar
  21. 21.
    Yi C, Peng Z, Wang H, Min L, Wang C (2011) Synthesis and characteristics of thermoplastic elastomer based on polyamide-6. Polym Int 60(12):1728–1736CrossRefGoogle Scholar
  22. 22.
    Xu Y, Zhang Y, Liu Q, Deng B (2012) Surface modification of nano-titanium dioxide based on polypropylene resin. New Chem Mater 40(9):81–83Google Scholar
  23. 23.
    Yamakata A, Ishibashi TA, Onishi H (2014) Pressure dependence of electron- and hole-consuming reactions in photocatalytic water splitting on Pt/TiO2 studied by time-resolved IR absorption spectroscopy. Int J Photoenergy 5(1):7–9CrossRefGoogle Scholar
  24. 24.
    Ren X, Luo Z, Wu C, Yang Y, Gai G (2011) Study on surface modification of heavy calcium carbonate. J China Min Univ 40(2):269–272Google Scholar
  25. 25.
    Wang X, Zhai S, Xie T (2017) Mechanism behind the improvement of coupling agent in interface bonding performance between organic transparent resin and inorganic cement matrix. Constr Build Mater 143:138–146CrossRefGoogle Scholar
  26. 26.
    Liu T, Zhang P, Wu Y (2002) Reaction mechanism of aluminate modified talc powder and its application in rubber. Silic J 30(5):608–610Google Scholar
  27. 27.
    Guo L, Zhang Q, Xiao R, Gu L, Wang H, Li Y (2014) Effect of TiO2 surface modification on strength and dyeing properties of polyamide 6 fiber. Synth Fibre 43(1):5–11Google Scholar
  28. 28.
    Sun F, Ming W, Li W, Li X, Gu W, Wang F (1998) Relationship between optical surface properties and photocatalytic activity of titanium dioxide. Chin J Catal 19(2):121–124Google Scholar
  29. 29.
    Zhiyu W, Peisong T, Yulong J, Xianping F, Guodong Q, Zhanglian H (2004) Study on fluorescence and diffuse reflection spectrum of nanosized TiO2. Rare Met Mater Eng 33(s1):162–165Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan ProvinceHunan Normal UniversityChangshaChina
  2. 2.College of Chemistry and Chemical EngineeringHunan Normal UniversityChangshaChina
  3. 3.National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of ResourcesHunan Normal UniversityChangshaChina

Personalised recommendations