Skip to main content
Log in

Silica nanoparticles with dual visible–NIR luminescence affected by silica confinement of Tb(III) and Yb(III) complexes for cellular imaging application

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The work introduces silica confinement of Tb(III) and Yb(III) complexes with p-sulfonatothiacalix[4]arene (TCAS) arisen from their doping into silica nanoparticles (51–60 nm) as the reason for efficient dual green–NIR luminescence. pH-regulated water solubility of the lanthanide complexes is highlighted as prerequisite for the balance between efficient doping of the complexes into silica nanoparticles and their size/shape university. The impact of Tb(III) → Yb(III) energy transfer on the NIR and visible luminescence of the nanoparticles was revealed from photophysical studies of the nanoparticles doped with different couples of lanthanide complexes (Tb–Gd, Tb–Yb, Yb–Gd) at various molar ratios. The optimal balance between green and NIR luminescence is achieved for the silica nanoparticles doped with Tb–Yb complexes at 2:1 (Tb:Yb) ratio due to both Tb(III) → Yb(III) energy transfer and specific distribution of Tb(III) and Yb(III) complexes within silica nanoparticles. The dual luminescent nanoparticles exhibit efficient cellular uptake behavior after amino-decoration of their surface, which is confirmed by confocal microscopy images of the cells incubated by the heterometallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mao L, Liu Y, Yang S, Li Y, Zhang X, Wei Y (2019) Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules. Dyes Pigm 162:611–623

    Article  Google Scholar 

  2. Zhang X, Wang K, Liu M, Zhang X, Tao L, Chen Y, Wei Y (2015) Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale 7:11486–11508

    Article  Google Scholar 

  3. Long Z, Mao L, Liu M, Wan Q, Wan Y, Zhang X, Wei Y (2017) Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes. Polym Chem 8(37):5644–5654

    Article  Google Scholar 

  4. Tian J, Jiang R, Gao P, Xu D, Mao L, Zeng G et al (2017) Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid)s. Mater Sci Eng C Mater 79:563–569

    Article  Google Scholar 

  5. Wan Q, Huang Q, Liu M, Xu D, Huang H, Zhang X, Wei Y (2017) Aggregation-induced emission active luminescent polymeric nanoparticles: non-covalent fabrication methodologies and biomedical applications. Appl Mater Today 9:145–160

    Article  Google Scholar 

  6. Chen X, Zhou G, Peng X, Yoon J (2012) Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem Soc Rev 41(13):4610–4630

    Article  Google Scholar 

  7. Stochaj U, Rodríguez Burbano DC, Cooper DR, Kodiha M, Capobianco JA (2018) The effects of lanthanide-doped upconverting nanoparticles on cancer cell biomarkers. Nanoscale 10:14464–14471

    Article  Google Scholar 

  8. Wang J, Shah ZH, Zhang S, Lu R (2014) Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale 6:4418–4437

    Article  Google Scholar 

  9. Makhinson B, Duncan AK, Elam AR, De Bettencourt-Dias A, Medley CD, Smith JE, Werner EJ (2013) Turning on lanthanide luminescence via nanoencapsulation. Inorg Chem 52:6311–6318

    Article  Google Scholar 

  10. Nakahara Y, Tatsumi Y, Akimoto I, Osaki S, Doi M, Kimura K (2015) Fluorescent silica nanoparticles modified chemically with terbium complexes as potential bioimaging probes: their fluorescence and colloidal properties in water. New J Chem 39:1452–1458

    Article  Google Scholar 

  11. Ibarra-Ruiz AM, Rodríguez Burbano DC, Capobianco JA (2016) Photoluminescent nanoplatforms in biomedical applications. Adv Phys X 1:194–225

    Google Scholar 

  12. Dong N-N, Pedroni M, Piccinelli F, Conti G, Sbarbati A, Ramírez-Hernández JE, Maestro LM, Iglesias-De La Cruz MC, Sanz-Rodriguez F, Juarranz A, Chen F, Vetrone F, Capobianco JA, Solé JG, Bettinelli M, Jaque D, Speghini A (2011) NIR-to-NIR two-photon excited CaF2:Tm3 + , Yb3 + nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5:8665–8671

    Article  Google Scholar 

  13. Wang X, Liu K, Yang G, Cheng L, He L, Liu Y, Li Y, Guo L, Liu Z (2014) Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing. Nanoscale 6:9198–9205

    Article  Google Scholar 

  14. Yang G, Lv R, He F, Qu F, Gai S, Du S, Wei Z, Yang P (2015) A core/shell/satellite anticancer platform for 808 NIR light-driven multimodal imaging and combined chemo-/photothermal therapy. Nanoscale 7:13747–13758

    Article  Google Scholar 

  15. Sun S-K, Wang H-F, Yan X-P (2018) Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc Chem Res 51:1131–1143

    Article  Google Scholar 

  16. Du B, Cao X, Zhao F, Su X, Wang Y, Yan X, Jia S, Zhou J, Yao H (2016) Multimodal imaging-guided, dual-targeted photothermal therapy for cancer. J Mater Chem B 4:2038–2050

    Article  Google Scholar 

  17. Li P, Yan Y, Chen B, Zhang P, Wang S, Zhou J, Fan H, Wang Y, Huang X (2018) Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy. Biomater Sci 6:877–884

    Article  Google Scholar 

  18. Bünzli J-CG (2015) On the design of highly luminescent lanthanide complexes. Coord Chem Rev 293–294:19–47

    Article  Google Scholar 

  19. Bünzli J-CG (2016) Lanthanide light for biology and medical diagnosis. J Lumin 170:866–878

    Article  Google Scholar 

  20. He F, Feng L, Yang P, Liu B, Gai S, Yang G, Dai Y, Lin J (2016) Enhanced up/down-conversion luminescence and heat: simultaneously achieving in one single core–shell structure for multimodal imaging guided therapy. Biomaterials 105:77–88

    Article  Google Scholar 

  21. Mukhametshina AR, Mustafina AR, Davydov NA, Fedorenko SV, Nizameev IR, Kadirov MK, Gorbatchuk VV, Konovalov AI (2015) Tb(III)-doped silica nanoparticles for sensing: effect of interfacial interactions on substrate-induced luminescent response. Langmuir 31:611–619

    Article  Google Scholar 

  22. Fedorenko SV, Mustafina AR, Mukhametshina AR, Jilkin ME, Mukhametzyanov TA, Solovieva AO, Pozmogova TN, Shestopalova LV, Shestopalov MA, Kholin KV, Osin YN, Sinyashin OG (2017) Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles. Mater Sci Eng, C 76:551–558

    Article  Google Scholar 

  23. Mukhametshina AR, Fedorenko SV, Zueva IV, Petrov KA, Masson P, Nizameev IR, Mustafina AR, Sinyashin OG (2016) Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine. Biosens Bioelectron 77:871–878

    Article  Google Scholar 

  24. Mukhametshina AR, Fedorenko SV, Petrov AM, Zakyrjanova GF, Petrov KA, Nurullin LF, Nizameev IR, Mustafina AR, Sinyashin OG (2018) Targeted nanoparticles for selective marking of neuromuscular junctions and ex vivo monitoring of endogenous acetylcholine hydrolysis. ACS Appl Mater Interfaces 10:14948–14955

    Article  Google Scholar 

  25. Mukhametshina A, Petrov A, Fedorenko S, Petrov K, Nizameev I, Mustafina A, Sinyashin O (2018) Luminescent nanoparticles for rapid monitoring of endogenous acetylcholine release in mice atria. Luminescence 33:588–593

    Article  Google Scholar 

  26. Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T (2014) Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg Chem 53:1867–1879

    Article  Google Scholar 

  27. Liu Q, Zou X, Shi Y, Shen B, Cao C, Cheng S, Feng W, Li F (2018) An efficient dye-sensitized NIR emissive lanthanide nanomaterial and its application in fluorescence-guided peritumoral lymph node dissection. Nanoscale 10:12573–12581

    Article  Google Scholar 

  28. Zatsepin A, Kuznetsova Y (2018) Down-conversion of UV radiation in erbium-doped gadolinium oxide nanoparticles. Appl Mater Today 12:34–42

    Article  Google Scholar 

  29. Chen D-M, Sun C-X, Peng Y, Zhang N-N, Si H-H, Liu C-S, Du M (2018) Ratiometric fluorescence sensing and colorimetric decoding methanol by a bimetallic lanthanide-organic framework. Sens Actuators, B 265:104–109

    Article  Google Scholar 

  30. Mustafina AR, Fedorenko SV, Konovalova OD, Menshikova AY, Shevchenko NN, Soloveva SE, Konovalov AI, Antipin IS (2009) Novel highly charged silica-coated Tb(III) nanoparticles with fluorescent properties sensitive to ion exchange and energy transfer processes in aqueous dispersions. Langmuir 25(5):3146–3151. https://doi.org/10.1021/la8032572

    Article  Google Scholar 

  31. Fedorenko SV, Bochkova OD, Mustafina AR, Burilov VA, Kadirov MK, Holin CV, Nizameev IR, Skripacheva VV, Menshikova AY, Antipin IS, Konovalov AI (2010) Dual visible and near-infrared luminescent silica nanoparticles. Synthesis and aggregation stability. J Phys Chem C 114:6350–6355

    Article  Google Scholar 

  32. Iki N, Fujimoto T, Miyano S (1998) A new water-soluble host molecule derived from thiacalixarene. Chem Lett 27:625–626

    Article  Google Scholar 

  33. Davydov N, Mustafina A, Burilov V, Zvereva E, Katsyuba S, Vagapova L, Konovalov A, Antipin I (2012) Complex formation of d-metal ions at the interface of TbIII-doped silica nanoparticles as a basis of substrate-responsive TbIII-centered luminescence. ChemPhysChem 13:3357–3364

    Article  Google Scholar 

  34. Chen Y, Zhang Y (2011) Fluorescent quantification of amino groups on silica nanoparticle surfaces. Anal Bioanal Chem 399:2503–2509

    Article  Google Scholar 

  35. Voloshina AD, Semenov VE, Strobykina AS, Kulik NV, Krylova ES, Zobov VV, Reznik VS (2017) Synthesis and antimicrobial and toxic properties of novel 1,3-bis(alkyl)-6-methyluracil derivatives containing 1,2,3- and 1,2,4-triazolium fragments. Russ J Bioorg Chem 43(2):170–176

    Article  Google Scholar 

  36. Arriagada FJ, Osseo-Asare K (1999) Controlled hydrolysis of tetraethoxysilane in a nonionic water-in-oil microemulsion: a statistical model of silica nucleation. Colloids Surf A 154(3):311–326

    Article  Google Scholar 

  37. Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342

    Article  Google Scholar 

  38. Fedorenko SV, Grechkina SL, Mustafina AR, Kholin KV, Stepanov AS, Nizameev IR, Ismaev IE, Kadirov MK, Zairov RR, Fattakhova AN, Amirov RR, Soloveva SE (2017) Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability. Colloids Surf B 149:243–249

    Article  Google Scholar 

  39. Karashimada R, Iki N (2016) Thiacalixarene assembled heterotrinuclear lanthanide clusters comprising TbIII and YbIII enable f–f communication to enhance YbIII-centred luminescence. Chem Commun 52:3139–3142

    Article  Google Scholar 

  40. Iki N, Hiro-oka S, Nakamura M, Tanaka T, Hoshino H (2012) Kinetically stable LnIII complexes comprising a trinuclear core sandwiched between two thiacalix[4]arene ligands self-assembled in water (LnIII = NdIII, YbIII). Eur J Inorg Chem 2012:3541–3545

    Article  Google Scholar 

  41. Amirov R, McMillan Z, Mustafina A, Chukurova I, Solovieva S, Antipin I, Konovalov A (2005) A first report on ternary complex formation between p-sulfonatothiacalix[4]arene, tetramethylammonium ion and gadolinium (III) ion in aqueous solutions. Inorg Chem Commun 8(9):821–824

    Article  Google Scholar 

  42. Bonacchi S, Genovese D, Juris R, Marzocchi E, Montalti M, Prodi L, Rampazzo E, Zaccheroni N (2008) In: Geddes CD (ed) Reviews in fluorescence. Springer, Baltimore, pp 119–137

    Google Scholar 

  43. Zhang Y, Lv J, Ding N, Jiang S, Zheng T, Li J (2015) Tunable luminescence and energy transfer from Gd3+ to Tb3+ ions in silicate oxyfluoride scintillating glasses via varying Tb3+ concentration. J Non-Cryst Solids 423–424:30–34

    Article  Google Scholar 

  44. Zairov R, Khakimullina G, Podyachev S, Nizameev I, Safiullin G, Amirov R, Vomiero A, Mustafina A (2017) Hydration number: crucial role in nuclear magnetic relaxivity of Gd(III) chelate-based nanoparticles. Sci Rep. https://doi.org/10.1038/s41598-017-14409-6

    Google Scholar 

  45. Larson DR, Ow H, Vishwasrao HD, Heikal AA, Wiesner U, Webb WW (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20:2677–2684

    Article  Google Scholar 

  46. Iki N, Ohta M, Tanaka T, Horiuchi T, Hoshino H (2009) A supramolecular sensing system for AgI at nanomolar levels by the formation of a luminescent AgI–TbIII–thiacalix[4]arene ternary complex. New J Chem 33(1):23–25

    Article  Google Scholar 

  47. Saha K, Kim ST, Yan B, Miranda OR, Alfonso FS, Shlosman D, Rotello VM (2013) Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 9:300–305

    Article  Google Scholar 

  48. Shahabi S, Treccani L, Dringen R, Rezwan K (2015) Modulation of silica nanoparticle uptake into human osteoblast cells by variation of the ratio of amino and sulfonate surface groups: effects of serum. ACS Appl Mater Interfaces 7:13821–13833

    Article  Google Scholar 

  49. Guarnieri D, Malvindi MA, Belli V, Pompa PP, Netti P (2014) Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. J Nanopart Res. https://doi.org/10.1007/s11051-013-2229-6

    Google Scholar 

  50. Zhu J, Liao L, Zhu L, Zhang P, Guo K, Kong J, Ji C, Liu B (2013) Size-dependent cellular uptake efficiency, mechanism, and cytotoxicity of silica nanoparticles toward HeLa cells. Talanta 107:408–415

    Article  Google Scholar 

  51. Colthup NB, Daly LH, Wiberley SE (1964) Introduction to infrared and Raman spectroscopy. Academic Press, New York, p 278

    Google Scholar 

  52. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  Google Scholar 

  53. Kipen HM, Laskin DL (2005) Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol 289:L696–L697

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Assigned Spectral-Analytical Center of FRC Kazan Scientific Center of RAS for technical assistance in research. The authors are grateful to Interdisciplinary Center for Analytical Microscopy at KFU for assistance with the confocal microscopy experiments. Authors thank Dr I.I. Vandykova for help in IR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Fedorenko.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, S., Gilmanova, D., Mukhametshina, A. et al. Silica nanoparticles with dual visible–NIR luminescence affected by silica confinement of Tb(III) and Yb(III) complexes for cellular imaging application. J Mater Sci 54, 9140–9154 (2019). https://doi.org/10.1007/s10853-019-03532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03532-6

Navigation