Skip to main content

Advertisement

Log in

Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study proposed a novel injectable nanocarrier for paclitaxel (PTX) based on biotin-modified bovine serum albumin (BSA). First, the biotin-modified BSA (biotin-BSA) was successfully synthesized and characterized by FT-IR analysis. Then, the PTX-loaded biotin-BSA nanoparticles (NPs) were prepared by disulfide bond reducing method and stabilized through the formation of intermolecular disulfide bonds. The influence of solution pH, glutathione concentration, temperature and organic solvent on the formation of NPs was studied. Under the optimized conditions, the PTX-loaded NPs had a mean diameter of 163 nm with zeta potential of − 35 mV. Transmission electron microscopy analysis showed that the NPs were sphere in shape and had a narrow size distribution. XRD and DSC spectra confirmed the successful encapsulation of PTX in the NPs in an amorphous state. The MTT assay verified that the in vitro cytotoxicity of PTX-loaded biotin-BSA NPs to biotin receptor-positive MCF-7 cells was a little higher than that of Taxol®. The cellular uptake experiments by flow cytometry demonstrated the biotin receptor-mediated endocytosis of biotin-BSA NPs. It can be concluded that the PTX-loaded biotin-BSA NPs were a promising drug delivery carrier for PTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dian L, Hu Y, Lin J, Zhang J, Yan Y, Cui Y, Su Z, Lu W (2018) Fabrication of paclitaxel hybrid nanomicelles to treat resistant breast cancer via oral administration. Int J Nanomed 13:719–731

    Article  CAS  Google Scholar 

  2. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157(2):168–182

    Article  CAS  Google Scholar 

  3. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324

    Article  CAS  Google Scholar 

  4. Salehiabar M, Nosrati H, Javani E, Aliakbarzadeh F, Kheiri Manjili H, Davaran S, Danafar H (2018) Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int J Biol Macromol 115:83–89

    Article  CAS  Google Scholar 

  5. Crisante F, Francolini I, Bellusci M, Martinelli A, D’Ilario L, Piozzi A (2009) Antibiotic delivery polyurethanes containing albumin and polyallylamine nanoparticles. Eur J Pharm Sci 36(4):555–564

    Article  CAS  Google Scholar 

  6. Kushwah V, Katiyar SS, Dora CP, Kumar Agrawal A, Lamprou DA, Gupta RC, Jain S (2018) Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management. Acta Biomater 73:424–436

    Article  CAS  Google Scholar 

  7. Fürst W, Banerjee A (2005) Release of glutaraldehyde from an albumin-glutaraldehyde tissue adhesive causes significant in vitro and in vivo toxicity. Ann Thorac Surg 79(5):1522–1528

    Article  Google Scholar 

  8. Wang W, Huang Y, Zhao S, Shao T, Cheng Y (2013) Human serum albumin (HSA) nanoparticles stabilized with intermolecular disulfide bonds. Chem Commun 49(22):2234–2236

    Article  CAS  Google Scholar 

  9. Shi H, Cheng Q, Yuan S, Ding X, Liu Y (2015) Human serum albumin conjugated nanoparticles for pH and redox-responsive delivery of a prodrug of cisplatin. Chem Eur J 21(46):16547–16554

    Article  CAS  Google Scholar 

  10. Hong R, Han G, Fernández JM, B-j Kim, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128(4):1078–1079

    Article  CAS  Google Scholar 

  11. Jiang L, Xu Y, Liu Q, Tang Y, Ge L, Zheng C, Zhu J, Liu J (2013) A nontoxic disulfide bond reducing method for lipophilic drug-loaded albumin nanoparticle preparation: formation dynamics, influencing factors and formation mechanisms investigation. Int J Pharm 443(1):80–86

    Article  CAS  Google Scholar 

  12. Gazzano E, Rolando B, Chegaev K, Salaroglio IC, Kopecka J, Pedrini I, Saponara S, Sorge M, Buondonno I, Stella B, Marengo A, Valoti M, Brancaccio M, Fruttero R, Gasco A, Arpicco S, Riganti C (2018) Folate-targeted liposomal nitrooxy-doxorubicin: an effective tool against P-glycoprotein-positive and folate receptor-positive tumors. J Control Release 270:37–52

    Article  CAS  Google Scholar 

  13. Chen X, Sun H, Hu J, Han X, Liu H, Hu Y (2017) Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery. Colloid Surface B 152:77–84

    Article  CAS  Google Scholar 

  14. Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, Ranjbari J, Mokhtarzadeh A, de la Guardia M (2017) Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release 268:323–334

    Article  CAS  Google Scholar 

  15. Kim SK, Foote MB, Huang L (2012) The targeted intracellular delivery of cytochrome  C protein to tumors using lipid-apolipoprotein nanoparticles. Biomaterials 33(15):3959–3966

    Article  CAS  Google Scholar 

  16. Yang W, Wang M, Ma L, Li H, Huang L (2014) Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier. Carbohyd Polym 99:720–727

    Article  CAS  Google Scholar 

  17. Navid N, Navid G, Mohsen A, Fatemeh A, Reza KM, Rassoul D (2016) Biotin/folate-decorated human serum albumin nanoparticles of docetaxel: comparison of chemically conjugated nanostructures and physically loaded nanoparticles for targeting of breast cancer. Chem Biol Drug Des 87(1):69–82

    Article  Google Scholar 

  18. Taheri A, Dinarvand R, Nouri FS, Khorramizadeh MR, Borougeni AT, Mansoori P, Atyabi F (2011) Use of biotin targeted methotrexate-human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int J Nanomed 6:1863–1874

    CAS  Google Scholar 

  19. Liang N, Sun S, Li X, Piao H, Piao H, Cui F, Fang L (2012) α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterization and in vitro/in vivo evaluations. Int J Pharm 423(2):480–488

    Article  CAS  Google Scholar 

  20. Liu L, Bi Y, Zhou M, Chen X, He X, Zhang Y, Sun T, Ruan C, Chen Q, Wang H, Jiang C (2017) Biomimetic human serum albumin nanoparticle for efficiently targeting therapy to metastatic breast cancers. ACS Appl Mater Interfaces 9(8):7424–7435

    Article  CAS  Google Scholar 

  21. Park C, Vo CL-N, Kang T, Oh E, Lee B-J (2015) New method and characterization of self-assembled gelatin-oleic nanoparticles using a desolvation method via carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction. Eur J Pharm Biopharm 89:365–373

    Article  CAS  Google Scholar 

  22. Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN (2017) Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl 10:11–21

    Article  CAS  Google Scholar 

  23. Bourassa P, Hasni I, Tajmir-Riahi HA (2011) Folic acid complexes with human and bovine serum albumins. Food Chem 129(3):1148–1155

    Article  CAS  Google Scholar 

  24. Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, He H, Yang VC, Huang Y (2016) Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 10(11):9999–10012

    Article  CAS  Google Scholar 

  25. Yang Z, Gong W, Wang Z, Li B, Li M, Xie X, Zhang H, Yang Y, Li Z, Li Y, Yu F, Mei X (2015) A novel drug-polyethylene glycol liquid compound method to prepare 10-hydroxycamptothecin loaded human serum albumin nanoparticle. Int J Pharm 490(1):412–428

    Article  CAS  Google Scholar 

  26. Kayani Z, Firuzi O, Bordbar A-K (2018) Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells. Int J Biol Macromol 107:1835–1843

    Article  CAS  Google Scholar 

  27. Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta 1595(1):235–249

    Article  CAS  Google Scholar 

  28. Grossmann L, Ebert S, Hinrichs J, Weiss J (2018) Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides. Algal Res 29:266–276

    Article  Google Scholar 

  29. Albanese A, Tang PS, Chan WCW (2012) The Effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14(1):1–16

    Article  CAS  Google Scholar 

  30. Prabha G, Raj V (2017) Sodium alginate–polyvinyl alcohol–bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater Sci Eng C Mater Biol Appl 79:410–422

    Article  CAS  Google Scholar 

  31. Kim C, Lee SC, Kang SW, Kwon IC, Kim Y-H, Jeong SY (2000) Synthesis and the micellar characteristics of poly(ethylene oxide)-deoxycholic acid conjugates. Langmuir 16(11):4792–4797

    Article  CAS  Google Scholar 

  32. Ren WX, Han J, Uhm S, Jang YJ, Kang C, Kim J-H, Kim JS (2015) Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chem Commun 51(52):10403–10418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (No. 51403057), Heilongjiang Natural Science Foundation (No. E2018052), Research and Development Project of Scientific and Technological Achievements for Colleges and Universities of Heilongjiang Province (No. TSTAU-R2018023), Harbin Science and Technology Innovation Talents Special Fund Project (Nos. 2016RQQXJ097 and 2016RQQXJ131) and the Doctoral Scientific Research Startup Foundation of Harbin Normal University (No. XKB201304) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Liang or Shaoping Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liang, N., Kawashima, Y. et al. Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel. J Mater Sci 54, 8613–8626 (2019). https://doi.org/10.1007/s10853-019-03486-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03486-9

Navigation