Skip to main content
Log in

Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchical SAPO-34 zeolites with a special nanosheet-assembled morphology were hydrothermally synthesized under dynamic condition by using the commercial quaternary ammonium-type organosilane surfactant [3-(trimethoxysilyl) propyl] octadecyldimethyl-ammonium chloride (TPOAC) for the mesoscopic aggregation and tetraethylammonium hydroxide as the micropore structure-directing agent. The growth evolution during the crystallization process and governing factors including TPOAC content and dynamic hydrothermal condition in the synthesis were discussed in detail, and the possible nucleation and growth process were proposed as well. With a systematic structure characterization by XRD, FTIR, N2 adsorption–desorption, ICP, SEM, TEM, NH3-TPD and pyridine-adsorbed IR measurements, the nanosheet-assembled SAPO-34 (NA-SP34) prepared under the optimized synthesis condition presented the pure phase of CHA framework, high degree of crystallinity, interconnected hierarchical meso-/microporosity and relatively weak acidity comparing with the conventional microporous SAPO-34 (CM-SP34) with micron size and the nanosheet-like SAPO-34 (NL-SP34) synthesized in the absence of TPOAC. Moreover, the catalytic performances evaluated by the methanol-to-olefin reaction indicated that the optimal NA-SP34 catalyst presented remarkable improvements of not only much longer catalytic lifetime (300 min) and slower coke formation rate (0.24 mg g−1 min−1) but also higher ethylene and propylene selectivity (81.93%) comparing with those (95 min, 0.55 mg g−1 min−1 and 80.75%, respectively) of CM-SP34, which can be attributed to the integrated balance of well-remained microporosity, considerable mesoporosity and suitable weak acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chang CD (1983) Hydrocarbons from methanol. Catal Rev 25:1–118

    Article  Google Scholar 

  2. Chang CD (1984) Methanol conversion to light olefins. Catal Rev 26:323–345

    Article  Google Scholar 

  3. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938

    Article  Google Scholar 

  4. Zhong J, Han J, Wei Y et al (2017) Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catal Sci Technol 7:4905–4923

    Article  Google Scholar 

  5. Dai W, Wu G, Li L, Guan N, Hunger M (2013) Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catal 3:588–596

    Article  Google Scholar 

  6. Chen D, Grønvold A, Moljord K, Holmen A (2007) Methanol conversion to light olefins over SAPO-34: reaction network and deactivation kinetics. Ind Eng Chem Res 46:4116–4123

    Article  Google Scholar 

  7. Qi L, Li J, Wang L, Wang C, Xu L, Liu Z (2017) Comparative investigation of the deactivation behaviors over HZSM-5 and HSAPO-34 catalysts during low-temperature methanol conversion. Catal Sci Technol 7:2022–2031

    Article  Google Scholar 

  8. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  Google Scholar 

  9. Teixeira AR, Qi X, Chang C-C, Fan W, Conner WC, Dauenhauer PJ (2014) On asymmetric surface barriers in MFI zeolites revealed by frequency response. J Phys Chem C 118:22166–22180

    Article  Google Scholar 

  10. Vattipalli V, Qi X, Dauenhauer PJ, Fan W (2016) Long walks in hierarchical porous materials due to combined surface and configurational diffusion. Chem Mater 28:7852–7863

    Article  Google Scholar 

  11. Qi X, Vattipalli V, Dauenhauer PJ, Fan W (2018) Silica nanoparticle mass transfer fins for MFI composite materials. Chem Mater 30:2353–2361

    Article  Google Scholar 

  12. Mehlhorn D, Valiullin R, Kärger J, Cho K, Ryoo R (2012) Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem 13:1495–1499

    Article  Google Scholar 

  13. Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760

    Article  Google Scholar 

  14. Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17:2494–2513

    Article  Google Scholar 

  15. Möller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707

    Article  Google Scholar 

  16. Yang G, Wei Y, Xu S et al (2013) Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C 117:8214–8222

    Article  Google Scholar 

  17. Sun Q, Wang N, Guo G, Yu J (2015) Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance. Chem Commun 51:16397–16400

    Article  Google Scholar 

  18. Gao B, Yang M, Qiao Y et al (2016) A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction. Catal Sci Technol 6:7569–7578

    Article  Google Scholar 

  19. Li Z, Martínez-Triguero J, Yu J, Corma A (2015) Conversion of methanol to olefins: stabilization of nanosized SAPO-34 by hydrothermal treatment. J Catal 329:379–388

    Article  Google Scholar 

  20. van Heyden H, Mintova S, Bein T (2008) Nanosized SAPO-34 synthesized from colloidal solutions. Chem Mater 20:2956–2963

    Article  Google Scholar 

  21. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249

    Article  Google Scholar 

  22. Fan W, Snyder MA, Kumar S et al (2008) Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat Mater 7:984–991

    Article  Google Scholar 

  23. Liu B, Wattanaprayoon C, Oh SC, Emdadi L, Liu D (2015) Synthesis of organic pillared MFI zeolite as bifunctional acid–base catalyst. Chem Mater 27:1479–1487

    Article  Google Scholar 

  24. Chen H, Yang M, Shang W et al (2018) Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Ind Eng Chem Res 57:10956–10966

    Article  Google Scholar 

  25. Xi D, Sun Q, Xu J et al (2014) In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. J Mater Chem A 2:17994–18004

    Article  Google Scholar 

  26. Yang M, Tian P, Wang C et al (2014) A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity. Chem Commun 50:1845–1847

    Article  Google Scholar 

  27. Yang H, Liu Z, Gao H, Xie Z (2010) Synthesis and catalytic performances of hierarchical SAPO-34 monolith. J Mater Chem 20:3227–3231

    Article  Google Scholar 

  28. Sun Q, Wang N, Guo G, Chen X, Yu J (2015) Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance. J Mater Chem A 3:19783–19789

    Article  Google Scholar 

  29. Wang J, Yang M, Shang W et al (2017) Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous Mesoporous Mater 252:10–16

    Article  Google Scholar 

  30. Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221

    Article  Google Scholar 

  31. Jin W, Wang B, Tuo P et al (2018) Selective desilication, mesopores formation, and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34. Ind Eng Chem Res 57:4231–4236

    Article  Google Scholar 

  32. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi D-H, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723

    Article  Google Scholar 

  33. Choi M, Srivastava R, Ryoo R (2006) Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem Commun 42:4380–4382

    Article  Google Scholar 

  34. Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun 50:6502–6505

    Article  Google Scholar 

  35. Wang C, Yang M, Tian P et al (2015) Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mater Chem A 3:5608–5616

    Article  Google Scholar 

  36. Liang J, Li H, Zhao S, Guo W, Wang R, Ying M (1990) Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl Catal 64:31–40

    Article  Google Scholar 

  37. Shen W, Li X, Wei Y et al (2012) A study of the acidity of SAPO-34 by solid-state NMR spectroscopy. Microporous Mesoporous Mater 158:19–25

    Article  Google Scholar 

  38. Buchholz A, Wang W, Arnold A, Xu M, Hunger M (2003) Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous Mesoporous Mater 57:157–168

    Article  Google Scholar 

  39. Zhang L, Bates J, Chen D, Nie H-Y, Huang Y (2011) Investigations of formation of molecular sieve SAPO-34. J Phys Chem C 115:22309–22319

    Article  Google Scholar 

  40. Borade RB, Clearfield A (1994) A comparative study of acidic properties of SAPO-5, -11, -34 and -37 molecular sieves. J Mol Catal 88:249–265

    Article  Google Scholar 

  41. Emdadi L, Oh SC, Wu Y et al (2016) The role of external acidity of meso-/microporous zeolites in determining selectivity for acid-catalyzed reactions of benzyl alcohol. J Catal 335:165–174

    Article  Google Scholar 

  42. Chen H, Wu Y, Tan Y, Li X, Qian Y, Xi H (2012) Mesoscopic simulation of surfactant/silicate self-assembly in the mesophase formation of SBA-15 under charge matching interactions. Eur Polym J 48:1892–1900

    Article  Google Scholar 

  43. Jo C, Jung J, Shin HS, Kim J, Ryoo R (2013) Capping with multivalent surfactants for zeolite nanocrystal synthesis. Angew Chem 125:10198–10201

    Article  Google Scholar 

  44. Inayat A, Knoke I, Spiecker E, Schwieger W (2012) Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chem Int Ed 51:1962–1965

    Article  Google Scholar 

  45. Guo Y-P, Wang H-J, Guo Y-J, Guo L-H, Chu L-F, Guo C-X (2011) Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem Eng J 166:391–400

    Article  Google Scholar 

  46. Cho K, Cho HS, de Ménorval L-C, Ryoo R (2009) Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem Mater 21:5664–5673

    Article  Google Scholar 

  47. Chen D, Moljord K, Fuglerud T, Holmen A (1999) The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29:191–203

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 21536009 and 21576221) and the Nova program supported by Natural Science Foundation of Shaanxi (No. 2018KJXX-014). H. Chen is grateful to China Scholarship Council (CSC, 201706970013) for a fellowship, to Prof. Wei Fan for hosting him as a visiting scholar studying in University of Massachusetts, Amherst.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiyong Chen or Xiaoxun Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, M., Yang, M. et al. Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance. J Mater Sci 54, 8202–8215 (2019). https://doi.org/10.1007/s10853-019-03485-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03485-w

Navigation