Skip to main content
Log in

Design and fabrication of Fe–Si–Al soft magnetic composites by controlling orientation of particles in a magnetic field: anisotropy of structures, electrical and magnetic properties

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Soft magnetic composites (SMCs) have rapidly become the hot spots of research, because of competitive magnetic saturation and high electrical resistivity. Although the magnetic properties have been continuously improved, the nonmagnetic separation and high demagnetization in structure result in low permeability. In this study, Fe–Si–Al SMCs with various particle orientations are designed and prepared under magnetic field. The effects of structures with various orientations on hysteresis loops, effective permeability, magnetic loss and electrical resistance are studied. The results show that the electrical and magnetic properties are totally determined by particle orientation. Especially, compared with non-oriented samples, the permeability of fully oriented samples with particles perpendicular to the normal axis has been greatly improved. This work is of great significance for the research and application of SMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cullity BD, Graham CD (2009) Introduction to magnetic materials. Wiley, Hoboken

    Google Scholar 

  2. Studniarek M, Halisdemir U, Schleicher F et al (2017) Probing a device’s active atoms. Adv Mater 29:1606578. https://doi.org/10.1002/adma.201606578

    Article  Google Scholar 

  3. Ade H, Stoll H (2009) Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials. Nat Mater 8:281–290. https://doi.org/10.1038/nmat2399

    Article  Google Scholar 

  4. Mikler CV, Chaudhary V, Soni V, Gwalani B, Ramanujan RV, Banerjee R (2017) Tuning the phase stability and magnetic properties of laser additively processed Fe-30at% Ni soft magnetic alloys. Mater Lett 199:88–92. https://doi.org/10.1016/j.matlet.2017.04.054

    Article  Google Scholar 

  5. Cheng KWE, Ding K, Ho SL, Fu WN, Wang JH, Wang SX (2011) Polymer-bonded NiZn ferrite magnetic cores mixed with titanium (IV) isopropoxide (C12H28O4Ti). J Appl Phys 109:07A514. https://doi.org/10.1063/1.3562038

    Article  Google Scholar 

  6. Ward L, O’Keeffe SC, Stevick J, Jelbert GR, Aykol M, Wolverton C (2018) A machine learning approach for engineering bulk metallic glass alloys. Acta Mater 159:102–111. https://doi.org/10.1016/j.actamat.2018.08.002

    Article  Google Scholar 

  7. Seo YP, Han S, Choi J, Takahara A, Choi HJ, Seo Y (2018) Searching for a stable high‐performance magnetorheological suspension. Adv Mater 30:1704769. https://doi.org/10.1002/adma.201704769

    Article  Google Scholar 

  8. Yang JA, Cui CX, Yang W, Hu B, Sun JB (2011) Electrochemical fabrication and magnetic properties of Fe7Co3 alloy nanowire array. J Mater Sci 46:2379–2383. https://doi.org/10.1007/s10853-010-5085-0

    Article  Google Scholar 

  9. Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Yusof NM, Marvibaigi M, Irfan M (2016) Characterization of maghemite (γ-Fe2O3)-loaded poly-l-lactic acid/thermoplastic polyurethane electrospun mats for soft tissue engineering. J Mater Sci 51:8361–8381. https://doi.org/10.1007/s10853-016-0087-1

    Article  Google Scholar 

  10. Rong CB, Zhang Y, Poudyal N et al (2011) Self-nanoscaling of the soft magnetic phase in bulk SmCo/Fe nanocomposite magnets. J Mater Sci 46:6065–6074. https://doi.org/10.1007/s10853-011-5568-7

    Article  Google Scholar 

  11. Hu T, Xuan SH, Ding L, Gong XL (2018) Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater Design 156:528–537. https://doi.org/10.1016/j.matdes.2018.07.024

    Article  Google Scholar 

  12. Wu Q, Zhang GY, Ma GQ et al (2018) Carbon composite materials with ordered mesoporous structures from straw: hydrothermal preparation and application as catalysts. Nanotechnology 29:385604. https://doi.org/10.1088/1361-6528/aacf57

    Article  Google Scholar 

  13. Kim Y, Yuk H, Zhao RK, Chester SA, Zhao XH (2018) Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558:274–279. https://doi.org/10.1038/s41586-018-0185-0

    Article  Google Scholar 

  14. Martin JE, Rohwer LES, Stupak J (2016) Elastic magnetic composites for energy storage flywheels. Compos Part B-Eng 97:141–149. https://doi.org/10.1016/j.compositesb.2016.03.096

    Article  Google Scholar 

  15. Lyubutin IS, Starchikov SS, Baskakov AO et al (2018) Exchange-coupling of hard and soft magnetic sublattices and magnetic anomalies in mixed spinel NiFe0. 75Cr1. 25O4 nanoparticles. J Magn Magn Mater 451:336–343. https://doi.org/10.1016/j.jmmm.2017.11.067

    Article  Google Scholar 

  16. Liu D, Wu C, Yan M (2015) Investigation on sol–gel Al2O3 and hybrid phosphate-alumina insulation coatings for FeSiAl soft magnetic composites. J Mater Sci 50:6559–6566. https://doi.org/10.1007/s10853-015-9189-4

    Article  Google Scholar 

  17. Li J, Peng XL, Yang YT, Ge HL (2017) Preparation and characterization of MnZn/FeSiAl soft magnetic composites. J Magn Magn Mater 426:132–136. https://doi.org/10.1016/j.jmmm.2016.11.068

    Article  Google Scholar 

  18. Li J, Peng XL, Yang YT, Ge HL, Wang DH, Du YW (2017) FeSiAl soft magnetic composites with NiZn ferrite coating produced via solvothermal method. AIP Adv 7:056109. https://doi.org/10.1063/1.4978402

    Article  Google Scholar 

  19. Xia X, Peng YD, Yi Y, Deng H, Zhu YY, Hu G (2019) The magnetic properties and microstructure of phosphated amorphous FeSiCr/silane soft magnetic composite. J Magn Magn Mater 474:424–433. https://doi.org/10.1016/j.jmmm.2018.11.058

    Article  Google Scholar 

  20. Yi Y, Peng YD, Xia C, Wu LY, Ke X, Nie JW (2019) Influence of heat treatment on microstructures and magnetic properties of Fe-based soft magnetic composites prepared by co-precipitation method. J Magn Magn Mater 476:100–105. https://doi.org/10.1016/j.jmmm.2018.12.049

    Article  Google Scholar 

  21. Shin DS, Oh JW, Kim HJ, Park SJ (2018) Microstructural and core loss behaviors of addictive Fe-17 at% P based on Fe-3.5 wt% Si alloys in powder injection molding. J Alloy Compd 749:758–767. https://doi.org/10.1016/j.jallcom.2018.03.321

    Article  Google Scholar 

  22. Fan XA, Wu ZY, Li GQ, Wang J, Xiang ZD, Gan ZH (2016) High resistivity and low core loss of intergranular insulated Fe–6.5 wt.% Si/SiO2 composite compacts. Mater Des 89:1251–1258. https://doi.org/10.1016/j.matdes.2015.10.087

    Article  Google Scholar 

  23. Suetsuna T, Suenaga S, Harada K (2016) Bulk nanogranular composite of magnetic metal and insulating oxide matrix. Scr Mater 113:89–92. https://doi.org/10.1016/j.scriptamat.2015.10.013

    Article  Google Scholar 

  24. Doering J, Steinborn G, Hofmann W (2015) Torque, power, losses, and heat calculation of a transverse flux reluctance machine with soft magnetic composite materials and disk-shaped rotor. IEEE Trans Ind Appl 51:1494–1504. https://doi.org/10.1109/Tia.2014.2356646

    Article  Google Scholar 

  25. Chrobak A, Kaleta A, Kwapulinski P, Kubisztal M, Haneczok G (2012) Magnetic shielding effectiveness of iron-based amorphous alloys and nanocrystalline composites. IEEE Trans Magn 48:1512–1515. https://doi.org/10.1109/Tmag.2011.2172587

    Article  Google Scholar 

  26. Wei D, Wang X, Nie Y et al (2015) Low loss Sendust powder cores comprised of particles coated by sodium salt insulating layer. J Appl Phys 117:17A921. https://doi.org/10.1063/1.4917337

    Article  Google Scholar 

  27. Tanabe S, Ohji H, Inoue K, Ozeki T (1992) Eddy currents and displacement currents in multi-layer soft magnetic films for recording heads. IEEE Trans Magn 28:2620–2622. https://doi.org/10.1109/20.179576

    Article  Google Scholar 

  28. Legarra E, Apinaniz E, Plazaola F (2012) Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys. J Alloy Compd 536:S282–S286. https://doi.org/10.1016/j.jallcom.2011.11.030

    Article  Google Scholar 

  29. Ma TY, Yan M, Wang W (2008) The evolution of microstructure and magnetic properties of Fe–Si–Al powders prepared through melt-spinning. Scr Mater 58:243–246. https://doi.org/10.1016/j.scriptamat.2007.10.017

    Article  Google Scholar 

  30. Jiles DC (1994) Modelling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media. IEEE Trans Magn 30:4326–4328. https://doi.org/10.1109/20.334076

    Article  Google Scholar 

  31. Taghvaei AH, Shokrollahi H, Janghorban K, Abiri H (2009) Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites. Mater Des 30:3989–3995. https://doi.org/10.1016/j.matdes.2009.05.026

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Province Public Welfare Technology Application Research Project (LGG19E010002), Natural Science Foundation of Zhejiang Province (LY16E030004) and National Natural Science Foundation of China (Nos. 51002132, 51402276, U1809216).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoling Peng or Hongliang Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Zhang, A., Li, J. et al. Design and fabrication of Fe–Si–Al soft magnetic composites by controlling orientation of particles in a magnetic field: anisotropy of structures, electrical and magnetic properties. J Mater Sci 54, 8719–8726 (2019). https://doi.org/10.1007/s10853-019-03470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03470-3

Navigation