Skip to main content
Log in

Highly charged, magnetically sensitive magnetite/polystyrene colloids: synthesis and tunable optical properties

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly charged monodisperse magnetite/polystyrene colloidal particles are successfully synthesized by using a miniemulsion polymerization method. The particles, with high saturation magnetization (Ms ≈ 38.6 emu g−1), display high sensitivity to the magnetic field and can self-assemble into periodically ordered colloidal structure in aqueous solution, thus diffract light strongly, under magnetic induction. By changing the strength of magnetic field, the position of reflection peaks can be reversibly tuned in the range of 420–720 nm, covering almost the entire visible light range. After adding 1.5 wt.% of acid black 210 into the colloidal suspension, the color saturation and brightness of the colloids are significantly improved. As-prepared magnetically responsive colloidal particles have great potential to be used in color display, biosensors, anti-counterfeiting, camouflage, pigments and dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Fig. 5

Similar content being viewed by others

References

  1. Tierno P (2014) Recent advances in anisotropic magnetic colloids: realization, assembly and applications. Phys Chem Chem Phys 16(43):23515–23528. https://doi.org/10.1039/c4cp03099k

    Article  Google Scholar 

  2. Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19(1):33–60. https://doi.org/10.1002/adma.200600674

    Article  Google Scholar 

  3. Faraudo J, Andreu JS, Calero C, Camacho J (2016) Predicting the self-assembly of superparamagnetic colloids under magnetic fields. Adv Funct Mater 26(22):3837–3858. https://doi.org/10.1002/adfm.201504839

    Article  Google Scholar 

  4. Zhu C, Chen L, Xu H, Gu Z (2009) A magnetically tunable colloidal crystal film for reflective display. Macromol Rapid Comm 30(22):1945–1949. https://doi.org/10.1002/marc.200900392

    Article  Google Scholar 

  5. Ge J, Yin Y (2008) Magnetically responsive colloidal photonic crystals. J Mater Chem 18(42):5041–5045. https://doi.org/10.1039/b809958h

    Article  Google Scholar 

  6. Hu H, Zhong H, Chen C, Chen Q (2014) Magnetically responsive photonic watermarks on banknotes. J Mater Chem C 2(19):3695–3702. https://doi.org/10.1039/c3tc32228a

    Article  Google Scholar 

  7. Ge J, Kwon S, Yin Y (2010) Niche applications of magnetically responsive photonic structures. J Mater Chem 20(28):5777–5784. https://doi.org/10.1039/c0jm00083c

    Article  Google Scholar 

  8. Hu H, Chen Q-W, Tang J, Hu X-Y, Zhou X-H (2012) Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures. J Mater Chem 22(22):11048–11053. https://doi.org/10.1039/c2jm30169e

    Article  Google Scholar 

  9. Zhu B, Fu Q, Chen K, Ge J (2018) Liquid photonic crystals for mesopore detection. Angew Chem Int Ed 57(1):252–256. https://doi.org/10.1002/anie.201710456

    Article  Google Scholar 

  10. Wang W, Fan X, Li F, Qiu J, Umair MM, Ren W, Ju B, Zhang S, Tang B (2018) Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display. Adv Opt Mater 6(4):1701093. https://doi.org/10.1002/adom.201701093

    Article  Google Scholar 

  11. Xuan R, Wu Q, Yin Y, Ge J (2011) Magnetically assembled photonic crystal film for humidity sensing. J Mater Chem 21(11):3672–3676. https://doi.org/10.1039/c0jm03790g

    Article  Google Scholar 

  12. Xu X, Friedman G, Humfeld KD, Majetich SA, Asher SA (2001) Superparamagnetic photonic crystals. Adv Mater 13(22):1681–1684. https://doi.org/10.1002/1521-4095(200111)13:22%3c1681:aid-adma1681%3e3.0.co;2-g

    Article  Google Scholar 

  13. Xu X, Friedman G, Humfeld KD, Majetich SA, Asher SA (2002) Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem Mater 14(3):1249–1256. https://doi.org/10.1021/cm010811h

    Article  Google Scholar 

  14. Ge J, Hu Y, Yin Y (2007) Highly tunable superparamagnetic colloidal photonic crystals. Angew Chem Int Edit 46(39):7428–7431. https://doi.org/10.1002/anie.200701992

    Article  Google Scholar 

  15. Ge J, Hu Y, Zhang T, Huynh T, Yin Y (2008) Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 24(7):3671–3680. https://doi.org/10.1021/la7039493

    Article  Google Scholar 

  16. He L, Wang M, Ge J, Yin Y (2012) Magnetic assembly route to colloidal responsive photonic nanostructures. Acc Chem Res 45(9):1431–1440. https://doi.org/10.1021/ar200276t

    Article  Google Scholar 

  17. Wang H, Sun Y-B, Chen Q-W, Yu Y-F, Cheng K (2010) Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property. Dalton Trans 39(40):9565–9569. https://doi.org/10.1039/c0dt00621a

    Article  Google Scholar 

  18. Hu Y, He L, Yin Y (2012) Charge stabilization of superparamagnetic colloids for high-performance responsive photonic structures. Small 8(24):3795–3799. https://doi.org/10.1002/smll.201201320

    Article  Google Scholar 

  19. He L, Hu Y, Wang M, Yin Y (2012) Determination of solvation layer thickness by a magnetophotonic approach. ACS Nano 6(5):4196–4202. https://doi.org/10.1021/nn3007288

    Article  Google Scholar 

  20. Wang M, He L, Xu W, Wang X, Yin Y (2015) Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. Angew Chem Int Ed 54(24):7077–7081. https://doi.org/10.1002/anie.201501782

    Article  Google Scholar 

  21. Shim TS, Kim SH, Sim JY, Lim JM, Yang SM (2010) Dynamic modulation of photonic bandgaps in crystalline colloidal arrays under electric field. Adv Mater 22:4494–4498. https://doi.org/10.1002/adma.201001227

    Article  Google Scholar 

  22. Han MG, Heo CJ, Shin CG, Shim HS, Kim JW, Jin YW, Lee SY (2013) Electrically tunable photonic crystals from long-range ordered crystalline arrays composed of copolymer colloids. J Mater Chem C 1:5791–5798. https://doi.org/10.1039/c3tc31192a

    Article  Google Scholar 

  23. Yan F, Zheng X, Sun Z, Zhao A (2012) Effect of surface modification of Fe3O4 nanoparticles on the preparation of Fe3O4/polystyrene composite particles via miniemulsion polymerization. Polym Bull 68(5):1305–1314. https://doi.org/10.1007/s00289-011-0614-9

    Article  Google Scholar 

  24. Wang M, He L, Yin Y (2013) Magnetic field guided colloidal assembly. Mater Today 16(4):110–116. https://doi.org/10.1016/j.mattod.2013.04.008

    Article  Google Scholar 

  25. Ge J, Yin Y (2008) Magnetically tunable colloidal photonic structures in alkanol solutions. Adv Mater 20(18):3485–3491. https://doi.org/10.1002/adma.200800657

    Article  Google Scholar 

  26. Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed 50(7):1492–1522. https://doi.org/10.1002/anie.200907091

    Article  Google Scholar 

  27. Zhang Y, Dong B, Chen A, Liu X, Shi L, Zi J (2015) Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility. Adv Mater 27(32):4719–4724. https://doi.org/10.1002/adma.201501936

    Article  Google Scholar 

  28. Tang B, Xu Y, Lin T, Zhang S (2015) Polymer opal with brilliant structural color under natural light and white environment. J Mater Res 30(20):3134–3141. https://doi.org/10.1557/jmr.2015.238

    Article  Google Scholar 

  29. Lai C-F, Wang Y-C (2016) Colloidal photonic crystals containing silver nanoparticles with tunable structural colors. Crystals 6(5):61–70. https://doi.org/10.3390/cryst6050061

    Article  Google Scholar 

  30. Cong H, Yu B, Wang S, Qi L, Wang J, Ma Y (2013) Preparation of iridescent colloidal crystal coatings with variable structural colors. Opt Express 21(15):17831–17838. https://doi.org/10.1364/oe.21.017831

    Article  Google Scholar 

  31. Shen Z, Shi L, You B, Wu L, Zhao D (2012) Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J Mater Chem 22(16):8069–8075. https://doi.org/10.1039/c2jm30546a

    Article  Google Scholar 

  32. Wang W, Tang B, Ma W, Zhang J, Ju B, Zhang S (2015) Easy approach to assembling a biomimetic color film with tunable structural colors. J Opt Soc Am A 32(6):1109–1117. https://doi.org/10.1364/josaa.32.001109

    Article  Google Scholar 

Download references

Acknowledgements

The research work is supported by the Natural Science Foundation (Nos. 51172178, 51222104, 51572215) of China, the Fundamental Research Funds for the Central Universities and the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Chen, C., Wen, X. et al. Highly charged, magnetically sensitive magnetite/polystyrene colloids: synthesis and tunable optical properties. J Mater Sci 54, 7628–7636 (2019). https://doi.org/10.1007/s10853-019-03445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03445-4

Navigation