Skip to main content
Log in

Influence of varnishing on the vibro-mechanical properties of wood used for violins

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Violins are varnished to protect them against wear, from changes in relative humidity and to enhance the instrument’s appearance. Furthermore, studies have shown that the application of varnish alters the mechanical and vibrational properties of the wood, respectively, the instrument. Commonly, the varnish impact has been studied by means of changes in stiffness, mass and damping properties of wooden test samples, and by changes in the modal parameters (i.e., eigenfrequency, eigenmode and damping) of top and bottom plates or the complete instrument, respectively. Although these properties determine the final sound quality, their changes have been less frequently studied than the chemical composition of the varnishes from historical instruments. This review focuses on the impact of varnishing on the vibro-mechanical properties of wood used for violins from material to complete instrument level, including the varnish properties and their influence on the moisture sorption. Based on a final discussion of the main impacts and results, an outlook specifies new avenues of research required to better understand the influence of varnish on wood used to make violins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

(Obataya et al. [54], with permission)

Figure 4

(Obataya et al. [56], with permission)

Figure 5

(Sedighi Gilani et al. [36], with permission)

Figure 6

(Sedighi Gilani et al. [36], with permission)

Figure 7

(Meinel [68], with permission)

Figure 8

(Schleske [2], with permission)

Figure 9

(Setragno et al. [37], with permission)

Figure 10
Figure 11
Figure 12
Figure 13

(Yano and Minato [81], with permission)

Similar content being viewed by others

References

  1. Bucur V (2016) The varnish. In: Handbook of materials for string musical instruments. Springer, Berlin, pp 373–453. https://doi.org/10.1007/978-3-319-32080-9_9

    Chapter  Google Scholar 

  2. Schleske M (1998) On the acoustical properties of violin varnish. Catgut Acoust Soc J 3(6):27–43

    Google Scholar 

  3. Glass SV, Zelinka SL (2010) Moisture relations and physical properties of wood. In: Wood handbook: wood as an engineering material. Forest Products Laboratory, United States Department of Agriculture Forest Service, Madison, Wisconsin

  4. Goli G, Fioravanti M, Busoni S, Carlson B, Mazzanti P (2012) Measurement and modelling of mass and dimensional variations of historic violins subjected to thermo-hygrometric variations: the case study of the Guarneri “del Gesù” violin (1743) known as the “Cannone”. J Cult Herit 13(3):S154–S160

    Google Scholar 

  5. Thompson R (1979) The effect of variations in relative humidity on the frequency response of free violin plates. Catgut Acoust Soc Newsl 32:25–27

    Google Scholar 

  6. Pérez Martínez MA, Poletti P, Gil Espert L (2011) Vibration testing for the evaluation of the effects of moisture content on the in-plane elastic constants of wood used in musical instruments. In: Vasques CMA, Dias Rodrigues J (eds) Vibration and structural acoustics analysis: current research and related technologies. Springer, Dordrecht, pp 21–57. https://doi.org/10.1007/978-94-007-1703-9_2

    Chapter  Google Scholar 

  7. Echard JP, Lavedrine B (2008) Review on the characterisation of ancient stringed musical instruments varnishes and implementation of an analytical strategy. J Cult Herit 9(4):420–429. https://doi.org/10.1016/j.culher.2008.03.005

    Article  Google Scholar 

  8. Tai BH (2007) Stradivari’s varnish: a review of scientific findings, part I. J Violin Soc Am VSA Pap 21(1):119–144

    Google Scholar 

  9. Tai BH (2007) Stradivari’s varnish: a review of scientific findings, part II. J Violin Soc Am VSA Pap 22(1):60–90

    Google Scholar 

  10. Dilworth J (1992) The violin and bow–origins and development. Cambridge University Press, Cambridge. https://doi.org/10.1017/ccol9780521390330.002

    Book  Google Scholar 

  11. Hill WH, Hill AF, Hill AE (1909) Antonio Stradivari: his life and work (1644–1737). Macmillan and Company, London

    Google Scholar 

  12. Fry G (1904) The varnishes of the Italian Violin-makers of the sixteenth, seventeenth and eighteenth centuries and their influence on tone. Stevens & Sons, San Antonio

    Google Scholar 

  13. Brandmair B, Greiner S-P, Blot E (2010) Stradivari varnish: scientific analysis of his finishing technique on selected instruments. Himmer AG, Augsburg, p 363

    Google Scholar 

  14. Cattani G, Dunbar RLM, Shapira Z (2013) Value creation and knowledge loss: the case of cremonese stringed instruments. Organ Sci 24(3):813–830. https://doi.org/10.1287/orsc.1120.0768

    Article  Google Scholar 

  15. Hsieh A (2004) Cremona revisited: the science of violin making. Eng Sci 67(4):28–35

    Google Scholar 

  16. Gunji T, Obataya E, Aoyama K (2012) Vibrational properties of harp soundboard with respect to its multi-layered structure. J Wood Sci 58(4):322–326. https://doi.org/10.1007/s10086-012-1253-y

    Article  Google Scholar 

  17. Minato K, Akiyama T, Yasuda R, Yano H (1995) Dependence of vibrational properties of wood on varnishing during its drying process in violin manufacturing. Holzforsch 49(3):222–226. https://doi.org/10.1515/hfsg.1995.49.3.222

    Article  CAS  Google Scholar 

  18. Haines D (1980) On musical instrument wood Part II. Catgut Acoust Soc Newsl 33:19–23

    Google Scholar 

  19. Meinel H (1937) Über Frequenzkurven von Geigen. Akust Z 2:22–33

    Google Scholar 

  20. Möckel O (1977) Die Kunst des Geigenbaues, 4th edn. Voigt, Hamburg

    Google Scholar 

  21. Harris N, Sheldon R, Johnston J (2007) A recreation of the particulate ground varnish layer used on many violins made before 1750. J Violin Soc Am VSA Pap 21(1):13

    Google Scholar 

  22. Woodhouse J (2014) The acoustics of the violin: a review. Rep Prog Phys 77(11):115901. https://doi.org/10.1088/0034-4885/77/11/115901

    Article  Google Scholar 

  23. Roussel A (1973) Grundlagen der Geige und des Geigenbaues: ein Lehr-und Handbuch von Bau und Funktion der Streichinstrumente und ihrer Teile, vol 13. Das Musikinstrument

  24. Nagyvary J (1988) The chemistry of a stradivarius. Chem Eng News 66(21):24–31. https://doi.org/10.1021/cen-v066n021.p024

    Article  CAS  Google Scholar 

  25. Holz D (1995) Materialuntersuchungen zum langjährigen akustischen Einfluß einer Lackierung. Musikinstrum 6–7:98–105

    Google Scholar 

  26. Schelleng JC (1968) Acoustical effects of violin varnish. J Acoust Soc Am 44(5):1175–1183. https://doi.org/10.1121/1.1911243

    Article  Google Scholar 

  27. Barlow CY, Woodhouse J (1988) Microscopy of wood finishes. Catgut Acoust Soc J 1(1):9–15

    Google Scholar 

  28. Chiesa C, Hargrave RG, Pollens S (1998) Giuseppe Guarneri del Gesù. Peter Biddulph

  29. VERNIX: a databse of varnish recipes found in an ancient textual sources (2018)

  30. Padding K (2005) A rational look at the classical Italian coatings. J Violin Soc Am VSA Pap 1(1):11–25

    Google Scholar 

  31. Barlow CY, Woodhouse J (1989) Of old wood and varnish: peering into the can of worms. Catgut Acoust Soc J 1(4):2–9

    Google Scholar 

  32. Barlow C, Woodhouse J (1989) Firm ground, a detailed analysis of ground layers under the microscope. Strad 100:195–197

    Google Scholar 

  33. Baese G (1985) Classic Italian violin varnish: its history, materials, preparation and application. Fort Collins, Colorado

    Google Scholar 

  34. Hammerl J, Hammerl R (1991) Violin varnishes: interesting information on resins and basic materials for violin varnish and advice on varnishing. J. & R, Hammerl

    Google Scholar 

  35. Barlow C, Woodhouse J (1990) The influence of varnish on the properties of spruce plates. Proc Inst Acoust 2:765–770

    Google Scholar 

  36. Sedighi Gilani M, Pflaum J, Hartmann S, Kaufmann R, Baumgartner M, Schwarze FWMR (2016) Relationship of vibro-mechanical properties and microstructure of wood and varnish interface in string instruments. Appl Phys A Mater 122(4):1–11. https://doi.org/10.1007/s00339-016-9670-1

    Article  CAS  Google Scholar 

  37. Setragno F, Zanoni M, Antonacci F, Sarti A, Malagodi M, Rovetta T, Invernizzi C (2017) Feature-based analysis of the impact of ground coat and varnish on violin tone qualities. Acta Acust United Acust 103(1):80–93

    Google Scholar 

  38. Echard JP, Bertrand L, von Bohlen A, Le Ho AS, Paris C, Bellot-Gurlet L, Soulier B, Lattuati-Derieux A, Thao S, Robinet L, Lavedrine B, Vaiedelich S (2010) The nature of the extraordinary finish of Stradivari’s instruments. Angew Chem Int Ed Engl 49(1):197–201. https://doi.org/10.1002/anie.200905131

    Article  CAS  Google Scholar 

  39. Fiocco G, Rovetta T, Gulmini M, Piccirillo A, Licchelli M, Malagodi M (2017) Spectroscopic analysis to characterize finishing treatments of ancient bowed string instruments. Appl Spectrosc 71(11):2477–2487. https://doi.org/10.1177/0003702817715622

    Article  CAS  Google Scholar 

  40. Barlow CY, Edwards PP, Millward GR, Raphael R, Rubio DJ (1988) Wood treatment used in Cremonese instruments. Nature 332(6162):313. https://doi.org/10.1038/332313a0

    Article  CAS  Google Scholar 

  41. Nagyvary J (1993) Entzifferung des Stradivari-Tones und allgemeine Geigenforschung in Texas. Musikinstrum 42(6–7):107–111

    Google Scholar 

  42. von Bohlen A, Röhrs S, Salomon J (2007) Spatially resolved element analysis of historical violin varnishes by use of μPIXE. Anal Bioanal Chem 387(3):781–790

    Google Scholar 

  43. Latour G, Echard J-P, Soulier B, Emond I, Vaiedelich S, Elias M (2009) Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin. Appl Opt 48(33):6485–6491. https://doi.org/10.1364/Ao.48.006485

    Article  Google Scholar 

  44. Pollens S (2009) Recipe for success. Strad 120(1429):34–38

    Google Scholar 

  45. Pollens S (2010) Stradivari. Cambridge University Press, Cambridge

    Google Scholar 

  46. Echard JP, Bertrand L, von Bohlen A, Le Ho AS, Paris C, Bellot-Gurlet L, Soulier B, Lattuati-Derieux A, Thao S, Robinet L, Lavedrine B, Vaiedelich S (2010) The nature of the extraordinary finish of Stradivari’s instruments. Angew Chem Int Ed 49(1):197–201. https://doi.org/10.1002/anie.200905131

    Article  CAS  Google Scholar 

  47. Bertrand L, Robinet L, Cohen SX, Sandt C, Le Ho AS, Soulier B, Lattuati-Derieux A, Echard JP (2011) Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy. Anal Bioanal Chem 399(9):3025–3032. https://doi.org/10.1007/s00216-010-4288-1

    Article  CAS  Google Scholar 

  48. Sodini N, Dreossi D, Chen R, Fioravanti M, Giordano A, Herrestal P, Rigon L, Zanini F (2012) Non-invasive microstructural analysis of bowed stringed instruments with synchrotron radiation X-ray microtomography. J Cult Herit 13(3):S44–S49. https://doi.org/10.1016/j.culher.2012.04.008

    Article  Google Scholar 

  49. Fichera GV, Rovetta T, Fiocco G, Alberti G, Invernizzi C, Licchelli M, Malagodi M (2018) Elemental analysis as statistical preliminary study of historical musical instruments. Microchem J 137:309–317. https://doi.org/10.1016/j.microc.2017.11.004

    Article  CAS  Google Scholar 

  50. Fiocco G, Rovetta T, Gulmini M, Piccirillo A, Canevari C, Licchelli M, Malagodi M (2018) Approaches for detecting madder lake in multi-layered coating systems of historical bowed string instruments. Coatings 8(5):171

    Google Scholar 

  51. Meyers MA, Chawla KK (2008) Mechanical behavior of materials, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511810947

    Book  Google Scholar 

  52. Carfagni M, Lenzi E, Pierini M (1998) The loss factor as a measure of mechanical damping. In: Proceedings-SPIE the international society for optical engineering. SPIE International Society For Optical, pp 580–284

  53. Bert CW (1973) Material damping: an introductory review of mathematic measures and experimental technique. J Sound Vib 29(2):129–153

    Google Scholar 

  54. Obataya E, Ohno Y, Norimoto M, Tomita B (2001) Effects of oriental lacquer (urushi) coating on the vibrational properties of wood used for the soundboards of musical instruments. Acoust Sci Technol 22(1):27–34

    Google Scholar 

  55. Simonnet C, Gibiat V, Halary J-L (2002) Physical and chemical properties of varnishes and their vibrational consequences. PACS Ref 43:75

    Google Scholar 

  56. Obataya E, Furuta Y, Ohno Y, Norimoto M, Tomita B (2002) Effects of aging and moisture on the dynamic viscoelastic properties of oriental lacquer (urushi) film. J Appl Polym Sci 83(11):2288–2294. https://doi.org/10.1002/app.2321

    Article  CAS  Google Scholar 

  57. Ono T (1993) Effects of varnishing on acoustical characteristics of wood used for musical instrument soundboards. J Acoust Soc Jpn (E) 14(6):397–407

    Google Scholar 

  58. Bucur V (2016) Preservative conservation of musical instruments. In: Handbook of materials for string musical instruments. Springer, Cham, pp 737–791. https://doi.org/10.1007/978-3-319-32080-9_16

  59. Bucur V (2006) Acoustics of wood, 2nd edn. Springer, Berlin

    Google Scholar 

  60. Haines DW (1979) On musical instrument wood. Catgut Acoust Soc Newsl 31:23–32

    Google Scholar 

  61. Hearmon RFS (1958) The influence of shear and rotatory inertia on the free flexural vibration of wooden beams. Br J Appl Phys 9(10):381–388. https://doi.org/10.1088/0508-3443/9/10/301

    Article  Google Scholar 

  62. Hutchins M (1991) Effects on spruce test strips of four-year application on four different sealers plus oil varnish. Catgut Acoust Soc J 1(7):11–12

    Google Scholar 

  63. Roohnia M, Ghaznavi M, Rostamisan A, Jahanlatib A, Yaghmaeipo A (2013) Traditional varnishes and acoustical properties of wooden soundboards. Sci Int 1(12):401–407. https://doi.org/10.17311/sciintl.2013.401.407

    Article  Google Scholar 

  64. Brémaud I, Karami E, Bardet S, Gilles N, Perego F, Zare S, Gril J (2016) Changes in vibrational properties of coated wood through time from application of varnish, with recipes used in European or Iranian string instruments making. In: Wooden musical instrument conservation and knowledge conference, WoodMusICK

  65. Karami E (2016) Effets de traitements thermiques modérés et de revêtement sur les propriétés vibratoires des bois d’Epicéa et de Mûrier. Université Montpellier

  66. Woo Yang Chung SHP (2000) Studies on the vibrational modal analysis of solid woods for making the violin—part 2. The effects of coating materials on the resonant frequency of European spruce and maple. Korea Furnit Soc 11(1):45–52

    Google Scholar 

  67. Kluck D (2000) Akustischer Einfluss losemittelarmer, wachshaltiger oder öliger Beschichtungssysteme auf Resonanzholz. Fortschr Akust 26:230–231

    Google Scholar 

  68. Meinel H (1957) Regarding the sound quality of violins and a scientific basis for violin construction. J Acoust Soc Am 29(7):817–822. https://doi.org/10.1121/1.1909064

    Article  Google Scholar 

  69. Slaby WE (1997) A test of seven possible fillers as moisture barriers and plate stiffeners. MVA Newsl No. 29 Oct 6–11

  70. Bongova M, Urgela S (1999) A study of surface coating influence on elastic properties of spruce wood by means of holographic vibration mode visualization. In: 11th Slovak–Czech–Polish optical conference on wave and quantum aspects of contemporary optics, pp 103–110. https://doi.org/10.1117/12.353047

  71. Eichelberger K (2006) Ermittlung von Kriterien zur Beurteilung der Lackqualität im Musikinstrumentenbau und Untersuchung von neuen Lackrezepturen. Inst. f. Musikinstrumentenbau, Techn. Univ. Dresden, Zwota. https://doi.org/10.2314/gbv:512069697

  72. Stephens H (2015) The effect of finishes on the vibration properties of spruce guitar soundboard wood. Savart J 1(5):1–18. https://www.savartjournal.org/index.php/sj/article/view/25

  73. Haines DW (2000) The essential mechanical properties of wood prepared for musical instruments. Catgut Acoust Soc J 4(2):20–32

    Google Scholar 

  74. Beare C (1992) Violin expertise: how can we be sure who made what? J Violin Soc Am 12(2):45–66

    Google Scholar 

  75. Condax L (1968) Examination of the ground layer of the Italian violin varnish. Catgut Acoust Soc Newsl 10:12–13

    Google Scholar 

  76. Schleske M (2002) Empirical tools in contemporary violin making: Part I. Analysis of design, materials, varnish, and normal modes. Catgut Acoust Soc J 4(5):50–64

    Google Scholar 

  77. Jansson EV (2002) Acoustics for violin and guitar makers. Kungl. Tekniska högskolan, Department of Speech. Music and Hearing

  78. Hutchins C (1987) Effects of five years of filler and varnish seasonings on the eigenmodes in four pairs of viola plates. Catgut Acoust Soc J 48:25–26

    Google Scholar 

  79. Skrodzka EB, Linde BB, Krupa A (2013) Modal parameters of two violins with different varnish layers and subjective evaluation of their sound quality. Arch Acoust 38(1):75–81. https://doi.org/10.2478/aoa-2013-0009

    Article  Google Scholar 

  80. Trapasso L (2014) Feature-based analysis of the violin tone quality. Master thesis, Politecnico di Milano

  81. Yano H, Minato K (1992) Improvement of the acoustic and hygroscopic properties of wood by a chemical treatment and application to the violin parts. J Acoust Soc Am 92(3):1222–1227. https://doi.org/10.1121/1.403972

    Article  Google Scholar 

  82. Tatemichi A (1960) Internal friction of multilayer plates. Oyo Buturi 29:802–803

    Google Scholar 

  83. Jones RM (2014) Mechanics of composite materials. CRC Press, Boca Raton

    Google Scholar 

  84. McLennan J (2000) On varnish. J Aust Assoc Musical Instrum Mak XIX 1:16–27

    Google Scholar 

  85. Hagenmaier RD, Shaw PE (1991) Permeability of shellac coatings to gases and water vapor. J Agric Food Chem 39(5):825–829

    CAS  Google Scholar 

  86. Reichel S (2015) Modellierung und Simulation hygro-mechanisch beanspruchter Strukturen aus Holz im Kurz-und Langzeitbereich. Inst. für Statik und Dynamik der Tragwerke, Dresden

    Google Scholar 

  87. Dionisi Vici P, Mazzanti P, Uzielli L (2006) Mechanical response of wooden boards subjected to humidity step variations: climatic chamber measurements and fitted mathematical models. J Cult Herit 7(1):37–48. https://doi.org/10.1016/j.culher.2005.10.005

    Article  Google Scholar 

  88. Brandao A, Perré P (1996) The” Flying Wood”—a quick test to characterise the drying behaviour of tropical woods. In: 5th international IUFRO wood drying conference, Québec, pp 315–324

  89. Viala R, Placet V, Cogan S, Foltête E (2016) Model-based effects screening of stringed instruments. In: Model validation and uncertainty quantification, vol 3. Springer, Berlin, pp 151–157. https://doi.org/10.1007/978-3-319-29754-5_14

    Chapter  Google Scholar 

  90. Brémaud I, Gril J (2015) Effect of transitional moisture change on the vibrational properties of violin-making wood. In: Cost FP1302 WoodMusICK annual conference

  91. Sasaki T, Norimoto M, Yamada T, Rowell R (1988) Effect of moisture on the acoustical properties of wood. Mokuzai Gak 34(10):794–803

    Google Scholar 

  92. Hunt D, Gril J (1996) Evidence of a physical ageing phenomenon in wood. J Mater Sci Lett 15(1):80–82

    CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the COST Project C15.0082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Lämmlein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lämmlein, S.L., Mannes, D., van Damme, B. et al. Influence of varnishing on the vibro-mechanical properties of wood used for violins. J Mater Sci 54, 8063–8095 (2019). https://doi.org/10.1007/s10853-019-03440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03440-9

Navigation