Planar penta-transition metal phosphide and arsenide as narrow-gap semiconductors with ultrahigh carrier mobility


Searching for single-atom thin materials in the planar structure, like graphene and borophene, is one of the most attractive themes in two-dimensional materials. Using density functional theory calculations, we have proposed a series of single-layer planar penta-transition metal phosphides and arsenides, i.e., TM2X4 (TM = Ni, Pd and Pt; X = P, As). According to the calculated phonon dispersion relation and elastic constants, as well as ab initio molecular dynamics simulation results, monolayers of planar penta-TM2X4 are dynamically, mechanically and thermally stable. In addition, screened HSE06 hybrid functional calculations including spin–orbit coupling show that these monolayers are direct band gap semiconductors, with band gaps ranging from 0.14 to 0.77 eV. Ultrahigh carrier mobilities up to 104–105 cm2 V−1 s−1 both for electrons and holes have been confirmed, among the highest in 2D semiconductors. Our results indicate that planar penta-TM2X4 monolayers are interesting narrow-gap semiconductors with ultrahigh carrier mobility as well as excellent optical properties, and may find potential applications in nanoelectronics and photoelectronics.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1

    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669.

    Article  CAS  Google Scholar 

  2. 2

    Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150.

    Article  CAS  Google Scholar 

  3. 3

    Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377.

    Article  CAS  Google Scholar 

  4. 4

    Novoselov KS, Mishchenko A, Carvalho A, Neto AHC (2016) 2D materials and van der Waals heterostructures. Science 353:aac9439.

    Article  CAS  Google Scholar 

  5. 5

    Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712.

    Article  CAS  Google Scholar 

  6. 6

    Nicolosi V, Chhowalla M, Kanatzidis MG et al (2013) Liquid exfoliation of layered materials. Science 340:1226419.

    Article  CAS  Google Scholar 

  7. 7

    Schaibley JR, Yu H, Clark G et al (2016) Valleytronics in 2D materials. Nat Rev Mater 1:16055.

    Article  CAS  Google Scholar 

  8. 8

    Feng B, Zhang J, Zhong Q et al (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8:563–568.

    Article  CAS  Google Scholar 

  9. 9

    Yuan J, Yu N, Xue K, Miao X (2017) Ideal strength and elastic instability in single-layer 8-Pmmn borophene. RSC Adv 7:8654–8660.

    Article  CAS  Google Scholar 

  10. 10

    Yuan J, Yu N, Xue K, Miao X (2017) Stability, electronic and thermodynamic properties of aluminene from first-principles calculations. Appl Surf Sci 409:85–90.

    Article  CAS  Google Scholar 

  11. 11

    Kamal C, Chakrabarti A, Ezawa M (2015) Aluminene as highly hole-doped graphene. New J Phys 17:083014.

    Article  CAS  Google Scholar 

  12. 12

    Vogt P, De Padova P, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501.

    Article  CAS  Google Scholar 

  13. 13

    Derivaz M, Dentel D, Stephan R et al (2015) Continuous germanene layer on Al (111). Nano Lett 15:2510–2516.

    Article  CAS  Google Scholar 

  14. 14

    Zhu F, Chen W, Xu Y et al (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020–1025.

    Article  CAS  Google Scholar 

  15. 15

    Zhang S, Yan Z, Li Y et al (2015) Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed 54:3112–3115.

    Article  CAS  Google Scholar 

  16. 16

    Yuan J, Yu N, Wang J et al (2018) Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl Surf Sci 436:919–926.

    Article  CAS  Google Scholar 

  17. 17

    Guan J, Zhu Z, Tománek D (2014) Phase coexistence and metal–insulator transition in few-layer phosphorene: a computational study. Phys Rev Lett 113:046804.

    Article  CAS  Google Scholar 

  18. 18

    Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728.

    Article  CAS  Google Scholar 

  19. 19

    Mortazavi B, Shahrokhi M, Makaremi M, Rabczuk T (2017) Theoretical realization of Mo2P; a novel stable 2D material with superionic conductivity and attractive optical properties. Appl Mater Today 9:292–299.

    Article  Google Scholar 

  20. 20

    Yin J, Wu B, Wang Y et al (2018) Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P). J Phys: Condens Matter 30:135701.

    Article  Google Scholar 

  21. 21

    Fan T, Zhou Y, Qiu M, Zhang H (2018) Black phosphorus: a novel nanoplatform with potential in the field of bio-photonic nanomedicine. J Innov Opt Health Sci 11:1830003.

    Article  CAS  Google Scholar 

  22. 22

    Li L, Wang W, Gong P et al (2018) 2D GeP: an unexploited low-symmetry semiconductor with strong in-plane anisotropy. Adv Mater 30:1706771.

    Article  CAS  Google Scholar 

  23. 23

    Shojaei F, Hahn JR, Kang HS (2017) Electronic structure and photocatalytic band offset of few-layer GeP2. J Mater Chem A 5:22146–22155.

    Article  CAS  Google Scholar 

  24. 24

    Jing Y, Ma Y, Li Y, Heine T (2017) GeP3: a small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement. Nano Lett 17:1833–1838.

    Article  CAS  Google Scholar 

  25. 25

    Miao N, Xu B, Bristowe NC et al (2017) Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer. J Am Chem Soc 139:11125–11131.

    Article  CAS  Google Scholar 

  26. 26

    Sun S, Meng F, Wang H et al (2018) Novel two-dimensional semiconductor SnP3: high stability, tunable bandgaps and high carrier mobility explored using first-principles calculations. J Mater Chem A 6:11890–11897.

    Article  CAS  Google Scholar 

  27. 27

    Ghosh B, Puri S, Agarwal A, Bhowmick S (2018) SnP3: a previously unexplored two-dimensional material. J Phys Chem C 122:18185–18191.

    Article  CAS  Google Scholar 

  28. 28

    Liu C-S, Yang X-L, Liu J, Ye X-J (2018) Theoretical prediction of two-dimensional SnP3 as a promising anode material for Na-ion batteries. ACS Appl Energy Mater 1:3850–3859.

    Article  CAS  Google Scholar 

  29. 29

    Lu N, Zhuo Z, Guo H et al (2018) CaP3: a new two-dimensional functional material with desirable band gap and ultrahigh carrier mobility. J Phys Chem Lett 9:1728–1733.

    Article  CAS  Google Scholar 

  30. 30

    Yuan J-H, Cresti A, Xue K-H et al (2019) TlP5: an unexplored direct band gap 2D semiconductor with ultra-high carrier mobility. J Mater Chem C 7:639–644.

    Article  CAS  Google Scholar 

  31. 31

    Li P, Zhang W, Li D et al (2018) Multifunctional binary monolayers GexPy: tunable band gap, ferromagnetism, and photocatalyst for water splitting. ACS Appl Mater Interfaces 10:19897–19905.

    Article  CAS  Google Scholar 

  32. 32

    Shojaei F, Kang HS (2017) Partially planar BP3 with high electron mobility as a phosphorene analog. J Mater Chem C 5:11267–11274.

    Article  CAS  Google Scholar 

  33. 33

    Yuan H, Li Z, Yang J (2018) Atomically thin semiconducting penta-PdP2 and PdAs2 with ultrahigh carrier mobility. J Mater Chem C 6:9055–9059.

    Article  CAS  Google Scholar 

  34. 34

    Liu Z, Wang H, Sun J et al (2018) Penta-Pt2N4: an ideal two-dimensional material for nanoelectronics. Nanoscale 10:16169–16177.

    Article  CAS  Google Scholar 

  35. 35

    Yuan J-H, Song Y-Q, Chen Q et al (2018) Single-layer planar penta-X2N4 (X = Ni, Pd and Pt) as direct-bandgap semiconductors from first principle calculations. Appl Surf Sci.

    Article  Google Scholar 

  36. 36

    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186.

    Article  CAS  Google Scholar 

  37. 37

    Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50.

    Article  CAS  Google Scholar 

  38. 38

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868.

    Article  CAS  Google Scholar 

  39. 39

    Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106.

    Article  CAS  Google Scholar 

  40. 40

    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979.

    Article  Google Scholar 

  41. 41

    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775.

    Article  CAS  Google Scholar 

  42. 42

    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192.

    Article  Google Scholar 

  43. 43

    Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106.

    Article  CAS  Google Scholar 

  44. 44

    Jiang J-W, Park HS (2014) Negative poisson’s ratio in single-layer black phosphorus. Nat Commun 5:4727.

    Article  CAS  Google Scholar 

  45. 45

    Zhu Z, Tománek D (2014) Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett 112:176802.

    Article  CAS  Google Scholar 

  46. 46

    Yuan J, Xie Q, Yu N, Wang J (2017) Surface regulated arsenenes as Dirac materials: from density functional calculations. Appl Surf Sci 394:625–629.

    Article  CAS  Google Scholar 

  47. 47

    Kamal C, Ezawa M (2015) Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B 91:085423.

    Article  CAS  Google Scholar 

  48. 48

    Aktürk OÜ, Özçelik VO, Ciraci S (2015) Single-layer crystalline phases of antimony: antimonenes. Phys Rev B 91:235446.

    Article  CAS  Google Scholar 

  49. 49

    Tsai H-S, Wang S-W, Hsiao C-H et al (2016) Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem Mater 28:425–429.

    Article  CAS  Google Scholar 

  50. 50

    Ji J, Song X, Liu J et al (2016) Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun 7:13352.

    Article  CAS  Google Scholar 

  51. 51

    Qin G, Yan Q-B, Qin Z et al (2015) Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys Chem Chem Phys 17:4854–4858.

    Article  CAS  Google Scholar 

  52. 52

    Ding Y, Wang Y (2013) Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J Phys Chem C 117:18266–18278.

    Article  CAS  Google Scholar 

  53. 53

    Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120.

    Article  CAS  Google Scholar 

  54. 54

    Andrew RC, Mapasha RE, Ukpong AM, Chetty N (2012) Mechanical properties of graphene and boronitrene. Phys Rev B 85:125428.

    Article  CAS  Google Scholar 

  55. 55

    Zhang S, Zhou J, Wang Q et al (2015) Penta-graphene: a new carbon allotrope. Proc Natl Acad Sci 112:2372–2377.

    Article  CAS  Google Scholar 

  56. 56

    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403.

    Article  CAS  Google Scholar 

  57. 57

    Savin A, Jepsen O, Flad J et al (1992) Electron localization in solid-state structures of the elements: the diamond structure. Angew Chem Int Ed Engl 31:187–188.

    Article  Google Scholar 

  58. 58

    Gatti C (2005) Chemical bonding in crystals: new directions. Z Für Krist Cryst Mater 220:399–457.

    CAS  Article  Google Scholar 

  59. 59

    Xu M, Cheng YQ, Sheng HW, Ma E (2009) Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. Phys Rev Lett 103:195502.

    Article  CAS  Google Scholar 

  60. 60

    Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys: Condens Matter 21:084204.

    CAS  Article  Google Scholar 

  61. 61

    Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360.

    Article  Google Scholar 

  62. 62

    Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28:899–908.

    Article  CAS  Google Scholar 

  63. 63

    Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401.

    Article  CAS  Google Scholar 

  64. 64

    Yuan J-H, Chen Q, Fonseca LR et al (2018) GGA-1/2 self-energy correction for accurate band structure calculations: the case of resistive switching oxides. J Phys Commun 2:105005.

    Article  CAS  Google Scholar 

  65. 65

    Xue K-H, Yuan J-H, Fonseca LRC, Miao X-S (2018) Improved LDA-1/2 method for band structure calculations in covalent semiconductors. Comput Mater Sci 153:493–505.

    Article  CAS  Google Scholar 

  66. 66

    Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80.

    Article  CAS  Google Scholar 

  67. 67

    Qiao J, Kong X, Hu Z-X et al (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:4475.

    Article  CAS  Google Scholar 

  68. 68

    Xie J, Zhang ZY, Yang DZ et al (2014) Theoretical prediction of carrier mobility in few-layer BC2N. J Phys Chem Lett 5:4073–4077.

    Article  CAS  Google Scholar 

  69. 69

    Zhang W, Huang Z, Zhang W, Li Y (2014) Two-dimensional semiconductors with possible high room temperature mobility. Nano Res 7:1731–1737.

    Article  CAS  Google Scholar 

  70. 70

    Yuan J-H, Gao B, Wang W et al (2015) First-principles calculations of the electronic structure and optical properties of Y-Cu co-doped ZnO. Acta Phys Chim Sin 31:1302–1308.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of China (Materials Genome Initiative, 2017YFB0701700), the National Natural Science Foundation of China under Grant No. 11704134, the Fundamental Research Funds for the Central Universities of China under Grant No. HUST:2016YXMS212 and the Hubei “Chu-Tian Young Scholar” program. K.-H. Xue received support from China Scholarship Council (No. 201806165012).

Author information



Corresponding author

Correspondence to Kan-Hao Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Zhang, B., Song, Y. et al. Planar penta-transition metal phosphide and arsenide as narrow-gap semiconductors with ultrahigh carrier mobility. J Mater Sci 54, 7035–7047 (2019).

Download citation