High-performance copper reinforced with dispersed nanoparticles

Abstract

Copper (Cu) has high electrical conductivity and is widely used for many industrial applications. However, pure Cu is very soft and improving the mechanical properties of Cu comes at the great expense of electrical and thermal conductivity. In this work, high-performance Cu with superior mechanical properties and reasonable electrical/thermal conductivity was fabricated using a scalable two-step method. First, Cu micro-powders with uniformly dispersed tungsten carbide (WC) nanoparticles were created by a molten salt-assisted self-incorporation process. A bulk nanocomposite was then obtained by melting the powders under pressure. The as-solidified Cu with 40 vol% uniformly dispersed WC nanoparticles exhibits high hardness, a yield strength over 1000 MPa, a Young’s modulus of over 250 GPa, and reasonable electrical and thermal conductivity.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Murashkin MY, Sabirov I, Sauvage X, Valiev RZ (2016) Nanostructured Al and Cu alloys with superior strength and electrical conductivity. J Mater Sci 51:33–49. https://doi.org/10.1007/s10853-015-9354-9

    Article  Google Scholar 

  2. 2

    Wang YA, Li JX, Yan Y, Qiao LJ (2012) Effect of electrical current on tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy. Tribol Int 50:26–34

    Article  Google Scholar 

  3. 3

    Zawrah MF, Zayed HA, Essawy RA, Nassar AH, Taha MA (2013) Preparation by mechanical alloying, characterization and sintering of Cu–20 wt% Al2O3 nanocomposites. Mater Des 46:485–490

    Article  Google Scholar 

  4. 4

    Watanabe H, Kunimine T, Watanabe C, Monzen R, Todaka Y (2018) Tensile deformation characteristics of a Cu–Ni–Si alloy containing trace elements processed by high-pressure torsion with subsequent aging. Mater Sci Eng A 730:10–15

    Article  Google Scholar 

  5. 5

    Copper Facts. https://www.copper.org/education/c-facts/. Accessed 6 Mar 2018

  6. 6

    Ma J, Huang F, Huang L, Geng Z, Ning H, Han Z (2002) Trends and development of copper alloys for lead frame. J Funct Mater 33:1–4

    Google Scholar 

  7. 7

    Ledbetter HM, Naimon ER (1974) Elastic properties of metals and alloys. II. Copper. J Phys Chem Ref Data 3:897–935

    Article  Google Scholar 

  8. 8

    Bhaskar MS, Abinandanan TA (2018) Effect of different solute diffusivities on precipitate coarsening in ternary alloys. Comput Mater Sci 146:73–83

    Article  Google Scholar 

  9. 9

    Chen X, Jiang F, Jiang J, Xu P, Tong M, Tang Z (2018) Precipitation, recrystallization, and evolution of annealing twins in a Cu–Cr–Zr alloy. Metals 8:227

    Article  Google Scholar 

  10. 10

    Fang DR, Tian YZ, Duan QQ, Wu SD, Zhang ZF, Zhao NQ, Li JJ (2011) Effects of equal channel angular pressing on the strength and toughness of Al–Cu alloys. J Mater Sci 46:5002–5008. https://doi.org/10.1007/s10853-011-5419-6

    Article  Google Scholar 

  11. 11

    Shaarbaf M, Toroghinejad MR (2008) Nano-grained copper strip produced by accumulative roll bonding process. Mater Sci Eng A 473:28–33

    Article  Google Scholar 

  12. 12

    Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426

    Article  Google Scholar 

  13. 13

    Ellis DL, Michal GM, Orth NW (1990) Production and processing of Cu–Cr–Nb alloys. Scr Metall Mater 24:885–890

    Article  Google Scholar 

  14. 14

    Kim JH, Yun JH, Park YH, Cho KM, Choi ID, Park IM (2007) Manufacturing of Cu–TiB2 composites by turbulent in situ mixing process. Mater Sci Eng A 449–451:1018–1021

    Article  Google Scholar 

  15. 15

    Chen L-Y, Xu J-Q, Choi H, Pozuelo M, Ma X, Bhowmick S, Yang J-M, Mathaudhu S, Li X-C (2015) Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528:539–543

    Article  Google Scholar 

  16. 16

    Pierson HO (1996) Handbook of refractory carbides and nitrides: properties, characteristics, processing and apps. William Andrew, Norwich

    Google Scholar 

  17. 17

    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Elsevier, Amsterdam

    Google Scholar 

  18. 18

    Ichikawa K, Achikita M (1993) Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting. Mater Trans JIM 34:718–724

    Article  Google Scholar 

  19. 19

    Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380:378–383

    Article  Google Scholar 

  20. 20

    Stobrawa JP, Rdzawski ZM (2009) Characterisation of nanostructured copper–WC materials. J Achiev Mater Manuf Eng 32:171–178

    Google Scholar 

  21. 21

    Akbulut H, Hatipoglu G, Algul H, Tokur M, Kartal M, Uysal M, Cetinkaya T (2015) Co-deposition of Cu/WC/graphene hybrid nanocomposites produced by electrophoretic deposition. Surf Coat Technol 284:344–352

    Article  Google Scholar 

  22. 22

    Gu D, Shen Y (2007) Influence of reinforcement weight fraction on microstructure and properties of submicron WC–Co p/Cu bulk MMCs prepared by direct laser sintering. J Alloys Compd 431:112–120

    Article  Google Scholar 

  23. 23

    Ma C, Zhao J, Cao C, Lin T-C, Li X (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part I: effect of nanoparticles on optical reflectivity, specific heat, and thermal conductivity. J Manuf Sci Eng 138:121001–121007

    Article  Google Scholar 

  24. 24

    Xu J, Chen L, Choi H, Konish H, Li X (2013) Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci Rep 3:1730

    Article  Google Scholar 

  25. 25

    Liu W, Cao C, Xu J, Wang X, Li X (2016) Molten salt assisted solidification nanoprocessing of Al–TiC nanocomposites. Mater Lett 185:392–395

    Article  Google Scholar 

  26. 26

    Ma C, Zhao J, Cao C, Lin T-C, Li X (2016) Fundamental study on laser interactions with nanoparticles-reinforced metals—part II: effect of nanoparticles on surface tension, viscosity, and laser melting. J Manuf Sci Eng 138:121002–121006

    Article  Google Scholar 

  27. 27

    Yao GC, Mei QS, Li JY, Li CL, Ma Y, Chen F, Liu M (2016) Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding. Mater Des 110:124–129

    Article  Google Scholar 

  28. 28

    Cao G, Choi H, Konishi H, Kou S, Lakes R, Li X (2008) Mg–6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J Mater Sci 43:5521. https://doi.org/10.1007/s10853-008-2785-9

    Article  Google Scholar 

  29. 29

    Davis JR (2001) Copper and copper alloys. ASM International, New York

    Google Scholar 

  30. 30

    Mills KC, Su YC (2006) Review of surface tension data for metallic elements and alloys: part 1—pure metals. Int Mater Rev 51:329–351

    Article  Google Scholar 

  31. 31

    Xu JQ, Chen LY, Choi H, Li XC (2012) Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys Condens Matter 24:255304

    Article  Google Scholar 

  32. 32

    Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, Burlington

    Google Scholar 

  33. 33

    Zhou D, Wang X, Zeng W, Yang C, Pan H, Li C, Liu Y, Zhang D (2018) Doping Ti to achieve microstructural refinement and strength enhancement in a high volume fraction Y2O3 dispersion strengthened Cu. J Alloys Compd 753:18–27

    Article  Google Scholar 

  34. 34

    Li M, Chen F, Si X, Wang J, Du S, Huang Q (2018) Copper–SiC whiskers composites with interface optimized by Ti3SiC2. J Mater Sci 53:9806–9815. https://doi.org/10.1007/s10853-018-2255-y

    Article  Google Scholar 

  35. 35

    Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83

    Article  Google Scholar 

  36. 36

    Zhou D, Geng H, Zeng W, Sha G, Kong C, Quadir Z, Munroe P, Torrens R, Trimby P, Zhang D (2018) Effect of extrusion temperature on microstructure and properties of an ultrafine-grained Cu matrix nanocomposite fabricated by powder compact extrusion. J Mater Sci 53:5389–5401. https://doi.org/10.1007/s10853-017-1952-2

    Article  Google Scholar 

  37. 37

    Girish BM, Basawaraj BR, Satish BM, Somashekar DR (2012) Electrical resistivity and mechanical properties of tungsten carbide reinforced copper alloy composites. Int J Compos Mater 2:37–42

    Google Scholar 

  38. 38

    da Costa FA, da Silva AGP, Gomes UU (2003) The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technol 134:123–132

    Article  Google Scholar 

  39. 39

    Stobrawa J, Rdzawski Z (2007) Dispersion–strengthened nanocrystalline copper. J Achiev Mater Manuf Eng 24:35–42

    Google Scholar 

  40. 40

    Zauter R, Kudashov DV (2006) Precipitation hardened high copper alloys for connector pins made of wire. In: Proceedings of ICEC2006/Sendai, pp 257–261

  41. 41

    CuMg0.5. http://www.conductivity-app.org/alloy-sheet/11. Accessed 6 May 2018

  42. 42

    Zhao N, Li J, Yang X (2004) Influence of the P/M process on the microstructure and properties of WC reinforced copper matrix composite. J Mater Sci 39:4829–4834. https://doi.org/10.1023/B:JMSC.0000035321.65140.14

    Article  Google Scholar 

  43. 43

    Tsakiris V, Enescu E, Radulian A, Lucaci M, Lungu M, Mocioi N, Leonat L, Cirstea D, Caramitu A (2016) WC–Cu electrical contacts developed by spark plasma sintering process. In: 2016 international symposium on fundamentals of electrical engineering (ISFEE)

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. We thank C. Linsley at University of California, Los Angeles for proofreading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Cao, C., Pan, S. et al. High-performance copper reinforced with dispersed nanoparticles. J Mater Sci 54, 4423–4432 (2019). https://doi.org/10.1007/s10853-018-3152-0

Download citation

Keywords

  • Bulk Nanocomposites
  • Metal Matrix Nanocomposites (MMNCs)
  • Orowan Strengthening
  • Direct Laser Sintering
  • Specific Heat Capacity Values