Skip to main content
Log in

Investigation of reinforced performance of modified graphene oxide/high solid content polysiloxane nanocomposite coating films

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide was modified using long-chain silicone. The modified graphene oxide (MGO) was obtained with a broader spacing of layers (1.45 nm) which means more beneficial to polysiloxane entering into the laminates of MGO sheets. Then, MGO sheets were combined with polysiloxane which synthesized without any organic solvent to prepare nanocomposite coatings via cross-linking curing reaction. The solid content of polysiloxane can be reached up to 86%. Due to strong interfacial interaction and synergistic reinforcing between MGO sheets and polysiloxane, when blended with 1.00 wt% of MGO, the micro-hardness and elastic modulus of coating films were increased by 57% and 24% comparing with pure polysiloxane coating film, respectively. Subsequently, a 48% improvement of macro-scratch resistance can be achieved. Simultaneously, MGO/polysiloxane coating film showed excellent wear resistance due to the unique two-dimensional geometry and low frictional coefficient of MGO sheets at work in homogeneous dispersion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Nemeth S, Liu Y (2009) Mechanical properties of hybrid sol–gel derived films as a function of composition and thermal treatment. Thin Solid Films 517:4888–4891

    Article  CAS  Google Scholar 

  2. Ballarre J, López DA, Cavalieri AL (2009) Frictional and adhesive behavior of organic–inorganic hybrid coatings on surgical grade stainless steel using nano-scratching technique. Wear 266:1165–1170

    Article  CAS  Google Scholar 

  3. Chen X, Zhou SX, You B, Wu LM (2011) Ambient-curable polysiloxane coatings: structure and mechanical properties. J Sol-Gel Sci Technol 58:490–500

    Article  CAS  Google Scholar 

  4. Barletta M, Gisario A, Puopolo M, Vesco S (2015) Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier. Mater Des 69:130–140

    Article  CAS  Google Scholar 

  5. Guyot A, Chu F, Schneider M, Graillat C, Mckenna TF (2002) High solid content latexes. Prog Polym Sci 27:1573–1615

    Article  CAS  Google Scholar 

  6. Herk AV (2013) Chemistry and technology of emulsion polymerisation. Wiley, New York, pp 46–78

    Book  Google Scholar 

  7. Martí M, Molina L, Alemán C, Armelin C (2013) Novel epoxy coating based on DMSO as a green solvent, reducing drastically the volatile organic compound content and using conducting polymers as a nontoxic anticorrosive pigment. ACS Sustain Chem Eng 1:1609–1618

    Article  Google Scholar 

  8. Bhatti UH, Nam S, Park SY, Baek HI (2018) Performance and mechanism of metal oxide catalyst-aided amine solvent regeneration. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b02422

    Article  Google Scholar 

  9. Pinheiro CT, Quina MJ, Gando-Ferreira LM (2018) New methodology of solvent selection for the regeneration of waste lubricant oil using greenness criteria. ACS Sustain Chem Eng 6:6820–6828

    Article  CAS  Google Scholar 

  10. Jia ZF, Li HQ, Zhao Y, Frazer L, Qian BS, Borguet E, Ren F, Dikin DA (2017) Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. J Mater Sci 52:11620–11629 https://doi.org/10.1007/s10853-017-1307-z

    Article  CAS  Google Scholar 

  11. Jin LF, Huang L, Ren LL, He YJ, Tang JW, Wang S, Yang WC, Wang HY, Chai LY (2018) Preparation of stable and high-efficient poly(m-phenylenediamine)/reduced graphene oxide composites for hexavalent chromium removal. J Mater Sci. https://doi.org/10.1007/s10853-018-2844-9

    Article  Google Scholar 

  12. Hu H, Zhao SY, Sun G, Zhong YJ, You B (2018) Evaluation of scratch resistance of functionalized graphene oxide/polysiloxane nanocomposite coatings. Prog Org Coat 117:118–129

    Article  CAS  Google Scholar 

  13. Berman D, Deshmukh SA, Sankaranarayanan SK, Erdemir K, Sumant AV (2015) Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348:1118–1122

    Article  CAS  Google Scholar 

  14. Berman D, Erdemir A, Sumant AV (2013) Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59:167–175

    Article  CAS  Google Scholar 

  15. Berman D, Erdemir A, Sumant AV (2013) Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54:454–459

    Article  CAS  Google Scholar 

  16. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  17. Stankovich S, Piner RD, Nguyen SBT, Rouff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  CAS  Google Scholar 

  18. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang ZM, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620

    Article  CAS  Google Scholar 

  19. Peng L, Xu Z, Liu Z, Wei Y, Sun HY, Li Z, Zhao XL, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 6:5716

    Article  CAS  Google Scholar 

  20. Lei D, Chen Z, Zhao X, Ma J, Lin S, Li M, Bao Y, Chu L, Leng K, Lu H, Loh KP (2018) A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nat Commun 9:76

    Article  Google Scholar 

  21. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Polym Sci 90:75–127

    CAS  Google Scholar 

  22. Qi B, Yuan Z, Liu S, Yang L, Yu J (2014) Mechanical and thermal properties of epoxy composites containing graphene oxide and liquid crystalline epoxy. Fiber Polym 15:326–333

    Article  CAS  Google Scholar 

  23. Wang Q, Kaminska I, Niedziolka JJ, Opallo M, Li M, Boukherroub R, Szunerits S (2013) Sensitive sugar detection using 4-aminophenylboronic acid modified graphene. Biosens Bioelectron 50:331–337

    Article  CAS  Google Scholar 

  24. Zhao HY, Wu LG, Zhou ZJ, Zhang L, Chen HL (2013) Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide. Phys Chem Chem Phys 15:9084–9092

    Article  CAS  Google Scholar 

  25. Stankovich S, Piner RD, Nguyen SBT, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  CAS  Google Scholar 

  26. Chen KL, Zhou SX (2015) Fabrication of ultraviolet-responsive microcapsules via Pickering emulsion polymerization using modified nano-silica/nano-titania as Pickering agents. RSC Adv 5:13850–13856

    Article  CAS  Google Scholar 

  27. Han J, Browning R, Sue HJ (2009) Understanding of scratch-induced damage mechanisms in polymers. Polymer 50:4056–4065

    Article  Google Scholar 

  28. Karaduman Y, Onal L (2013) Dynamic mechanical and thermal properties of enzyme-treated jute/polyester composites. J Compos Mater 47:2361–2370

    Article  Google Scholar 

  29. Huang T, Xin Y, Li TS, Nutt S, Su C, Chen HM, Liu P, Lai ZL (2013) Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. ACS Appl Mater Interfaces 5:4878–4891

    Article  CAS  Google Scholar 

  30. Huang T, Lu RG, Su C, Wang HN, Guo Z, Liu P, Huang ZY, Chen HM, Li TS (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4:2699–2708

    Article  CAS  Google Scholar 

  31. Li C, Xiang M, Ye L (2016) Intercalation behavior and orientation structure of graphene oxide/polyethylene glycol hybrid material. RSC Adv 6:72193–72200

    Article  CAS  Google Scholar 

  32. Zhou Y, Bao QL, Tang LAL, Zhong YL, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956

    Article  CAS  Google Scholar 

  33. Ramanathan T, Abdala AAA, Stankovich S, Dikin DA, Herrera-alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 6:327–331

    Article  Google Scholar 

  34. Slinckx M, Henry N, Krebs A, Uytterhoeven G (2000) High-solids automotive coatings. Prog Org Coat 38:163–173

    Article  CAS  Google Scholar 

  35. Schiavon M, Martini LM, Corrà C, Scapinello M, Coller G, Tosi P, Ragazzi M (2017) Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices. Environ Pollut 231:845–853

    Article  CAS  Google Scholar 

  36. Ho J, Mudraboyina B, Spence-Elder C, Resendes R, Cunningham MF, Jessop PG (2018) Water-borne coatings that share the mechanism of action of oil-based coatings. Green Chem 20:1899–1905

    Article  CAS  Google Scholar 

  37. Wang J, Li C, Xu B (2009) Basic principle, advance and current application situation of sol–gel method. Chem Ind Eng 26:273–277

    CAS  Google Scholar 

  38. Vidal L, Gharzouni A, Joussein E, Colas JM, Cornette J, AbsiS J, Rossignol S (2017) Determination of the polymerization degree of various alkaline solutions: Raman investigation. J Sol-Gel Sci Technol 83:1–11

    Article  CAS  Google Scholar 

  39. Lee S, Cho IS, Ji HL, Kim DH, Kim DW, Kim JY, Shin H, Lee JK, Jung HS, Park NG, Kim K, Ko MJ, Hong KS (2010) Two-step sol−gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices. Chem Mater 22:1958–1965

    Article  CAS  Google Scholar 

  40. Min CY, Nie P, Ying L, Shen D, Zeng M, Li N (2014) Preparation and tribological properties of high temperature resistance graphene oxide/polyimide nanocomposites. J Solid Rocket Technol 4:569–573

    Google Scholar 

  41. Lakshmi RV, Bharathidasan T, Basu BJ (2011) Superhydrophobic sol–gel nanocomposite coatings with enhanced hardness. Appl Surf Sci 257:10421–10426

    Article  CAS  Google Scholar 

  42. Zhou SX, Ding X, Wu LM (2013) Fabrication of ambient-curable superhydrophobic fluoropolysiloxane/TiO2 nanocomposite coatings with good mechanical properties and durability. Prog Org Coat 76:563–570

    Article  CAS  Google Scholar 

  43. Ding X, Zhou SX, Gu GX, Wu LM (2011) Facile fabrication of superhydrophobic polysiloxane/magnetite nanocomposite coatings with electromagnetic shielding property. J Coat Technol Res 8:757–764

    Article  CAS  Google Scholar 

  44. Li CJ, Xiang M, Zhao XW, Ye L (2017) In situ synthesis of monomer casting nylon-6/graphene-polysiloxane nano-composites: intercalation structure, synergistic reinforcing and friction-reducing effect. ACS Appl Mater Interfaces 9:33176–33190

    Article  CAS  Google Scholar 

  45. Li CJ, Xiang M, Ye L (2017) Intercalation structure and highly enhancing tribological performance of monomer casting nylon-6/graphene nano-composites. Compos A Appl Sci Manuf 95:274–285

    Article  CAS  Google Scholar 

  46. Wu P, Li XM, Zhang CH, Lin SY, Sun HY, Lin CT, Zhu HW, Liu JB (2017) Self-assembled graphene film as low friction solid lubricant in macroscale contact. ACS Appl Mater Interfaces 9:21554–21562

    Article  CAS  Google Scholar 

  47. Arif T, Colas G, Filleter T (2018) Effect of humidity and water intercalation on the tribological behavior of graphene and graphene oxide. ACS Appl Mater Interfaces 10:22537–22544

    Article  CAS  Google Scholar 

  48. Liang JJ, Huang Y, Zhang L, Wang Y, Ma YF, Guo TY, Chen YS (2010) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  Google Scholar 

  49. EI-Ghazaly A, Anis G, Salem HG (2017) Effect of graphene addition on the mechanical and tribological behaviorof nanostructured AA2124 self-lubricating metal matrix composite. Compos A Appl Sci Manuf 95:325–336

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this research from the United Innovation Program of Shanghai Commercial Aircraft Engine Fund (AR909), Municipal Bureau of Quality and Technical Supervision Project of Shanghai (2018) is appreciated.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written and revised through contributions of first author and corresponding author. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Bo You.

Ethics declarations

Conflict of interests

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ying, X., Zhang, M. et al. Investigation of reinforced performance of modified graphene oxide/high solid content polysiloxane nanocomposite coating films. J Mater Sci 54, 3052–3068 (2019). https://doi.org/10.1007/s10853-018-3077-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3077-7

Keywords

Navigation