Journal of Materials Science

, Volume 54, Issue 5, pp 3832–3846 | Cite as

Improving the electroactive phase, thermal and dielectric properties of PVDF/graphene oxide composites by using methyl methacrylate-co-glycidyl methacrylate copolymers as compatibilizer

  • Shixin Song
  • Zaihang Zheng
  • Yuanjing Bi
  • Xue LvEmail author
  • Shulin SunEmail author


In this work, graphene oxide sheets (GO) filled polyvinylidene fluoride (PVDF) nanodielectric composites with methyl methacrylate-co-glycidyl methacrylate copolymer (MG) as compatibilizer were fabricated by solution blend process. MG improved the dispersion of GO and enhanced the interface strength between GO and PVDF matrix. The strong dipolar interaction between MG on the surface of GO and PVDF resulted in the crystal transformation of PVDF from α-phase to β/γ-phase and nearly 81% β/γ-phase PVDF formed for PVDF/MG@GO7.0 composite. The thermal stability, mechanical property, melting and crystallization behaviors of PVDF/MG@GO composites were improved obviously due to the enhanced interface strength between GO and PVDF matrix with the aid of MG. MG copolymers not only contributed to the uniform dispersion of GO in PVDF, but also prevented the direct connection of GO and effectively inhibited the occurrence of leakage current in composites. Therefore, the dielectric properties of PVDF/MG@GO composites were also enhanced significantly with the addition of MG compared with the PVDF/GO composites, which supported the fact that the dielectric properties of resulted composites could be tailored by using MG copolymer as compatibilizer.



This work is supported by the National Natural Science Foundation of China (No. 51273025), Jilin Provincial Science & Technology Department (20170203010GX) and the Education Department of Jilin Province (JJKH20170551KJ).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Kumar B, Kim SW (2012) Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1:342–355CrossRefGoogle Scholar
  2. 2.
    Brochu P, Stoyanov H, Chang R, Niu X, Hu W, Pei Q (2014) Capacitive energy harvesting using highly stretchable silicone-carbon nanotube composite electrodes. Adv Energy Mater 4:1300659–1300667CrossRefGoogle Scholar
  3. 3.
    Poudel A, Coffey A, Kennedy J, Lyons S, Thomas K, Walsh P (2015) Dielectric polarization enhancement of thermoplastic elastomers for sensing and energy harvesting applications. Int J Mater Mech Manuf 4:237–242Google Scholar
  4. 4.
    Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan CW (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28:2055–2061CrossRefGoogle Scholar
  5. 5.
    Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn H, Zur Loye H-C (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733CrossRefGoogle Scholar
  6. 6.
    Chang J, Dommer M, Chang C, Lin L (2012) Piezoelectric nanofibers for energy scavenging applications. Nano Energy 1:356–371CrossRefGoogle Scholar
  7. 7.
    Kim JY, Kim H, Kim T, Yu S, Suk JW, Jeong T, Song S, Bae MJ, Han I, Jung D, Park SH (2013) A chlorinated barium titanate-filled polymer composite with a high dielectric constant and its application to electroluminescent devices. J Mater Chem C 1:5078–5083CrossRefGoogle Scholar
  8. 8.
    Li R, Xiong C, Kuang D, Dong L, Lei Y, Yao J, Jiang M, Li L (2008) Polyamide 11/poly(vinylidene fluoride) blends as novel flexible materials for capacitors. Macromol Rapid Commun 29:1449–1454CrossRefGoogle Scholar
  9. 9.
    Shehzad K, Ul-Haq A, Ahmad S, Mumtaz M, Hussain T, Mujahid A, Shah AT, Choudhry MY, Khokhar I, Ul-Hassan S, Nawaz F, Rahman Fu, Butt Y, Pervaiz M (2013) All-organic PANI-DBSA/PVDF dielectric composites with unique electrical properties. J Mater Sci 48:3737–3744. CrossRefGoogle Scholar
  10. 10.
    Yao L, Wang D, Hu P, Han BZ, Dang ZM (2016) Synergetic enhancement of permittivity and breakdown strength in all-polymeric dielectrics toward flexible energy storage devices. Adv Mater Interfaces 3:1600016–1600020CrossRefGoogle Scholar
  11. 11.
    Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706CrossRefGoogle Scholar
  12. 12.
    Shen Y, Lin YH, Nan CW (2007) Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv Funct Mater 17:2405–2410CrossRefGoogle Scholar
  13. 13.
    Shen Y, Lin Y, Li M, Nan CW (2007) High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv Mater 19:1418–1422CrossRefGoogle Scholar
  14. 14.
    da Silva AB, Arjmand M, Sundararaj U, Bretas RES (2014) Novel composites of copper nanowire/PVDF with superior dielectric properties. Polymer 55:226–234CrossRefGoogle Scholar
  15. 15.
    Toor A, So H, Pisano AP (2017) Improved dielectric properties of polyvinylidene fluoride nanocomposite embedded with poly(vinylpyrrolidone)-coated gold nanoparticles. ACS Appl Mater Interfaces 9:6369–6375CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Xu D, Xu W, Wei W, Guan S, Jiang Z (2014) Influence of the existence of a phthalocyanine phase on the dielectric properties of ternary composites: carbon nanotubes/phthalocyanine/poly(vinylidene fluoride). Compos Sci Technol 104:89–96CrossRefGoogle Scholar
  17. 17.
    Liu S, Tian M, Zhang L, Lu Y, Chan TW, Ning N (2016) Tailoring dielectric properties of polymer composites by controlling alignment of carbon nanotubes. J Mater Sci 51:2616–2626. CrossRefGoogle Scholar
  18. 18.
    Yao S, Yuan J, H-a Mehedi, Gheeraert E, Sylvestre A (2017) Carbon nanotube forest based electrostatic capacitor with excellent dielectric performances. Carbon 116:648–654CrossRefGoogle Scholar
  19. 19.
    Jin Y, Xia N, Gerhardt RA (2016) Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy 30:407–416CrossRefGoogle Scholar
  20. 20.
    Zhang W, Zhou Z, Li Q, Chen GX (2014) Controlled dielectric properties of polymer composites from coating multiwalled carbon nanotubes with octa-acrylate silsesquioxane through Diels–Alder cycloaddition and atom transfer radical polymerization. Ind Eng Chem Res 53:6699–6707CrossRefGoogle Scholar
  21. 21.
    Zhao X, Zhao J, Cao JP, Wang X, Chen M, Dang ZM (2013) Tuning the dielectric properties of polystyrene/poly(vinylidene fluoride) blends by selectively localizing carbon black nanoparticles. J Phys Chem B 117:2505–2515CrossRefGoogle Scholar
  22. 22.
    Huang M, Tunnicliffe LB, Zhuang J, Ren W, Yan H, Busfield JJC (2016) Strain-dependent dielectric behavior of carbon black reinforced natural rubber. Macromolecules 49:2339–2347CrossRefGoogle Scholar
  23. 23.
    Xing C, Wang Y, Huang X, Li Y, Li J (2016) Poly(vinylidene fluoride) nanocomposites with simultaneous organic nanodomains and inorganic nanoparticles. Macromolecules 49:1026–1035CrossRefGoogle Scholar
  24. 24.
    Tong W, Zhang Y, Yu L, Luan X, An Q, Zhang Q, Lv F, Chu PK, Shen B, Zhang Z (2014) Novel method for the fabrication of flexible film with oriented arrays of graphene in poly(vinylidene fluoride-co-hexafluoropropylene) with low dielectric loss. J Phys Chem C 118:10567–10573CrossRefGoogle Scholar
  25. 25.
    Shang J, Zhang Y, Yu L, Luan X, Shen B, Zhang Z, Lv F, Chu PK (2013) Fabrication and enhanced dielectric properties of graphene-polyvinylidene fluoride functional hybrid films with a polyaniline interlayer. J Mater Chem A 1:884–890CrossRefGoogle Scholar
  26. 26.
    Wan YJ, Zhu P-L, Yu SH, Yang WH, Sun R, Wong C-P, Liao WH (2017) Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites. Compos Sci Technol 141:48–55CrossRefGoogle Scholar
  27. 27.
    Karan SK, Das AK, Bera R, Paria S, Maitra A, Shrivastava NK, Khatua BB (2016) Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications. Rsc Adv 6:37773–37783CrossRefGoogle Scholar
  28. 28.
    Chen Z, Huang H, Yan S, Zheng Z, Liu S, Yuan Y, Zhao J, Fu Y (2017) New synthetic approach of fluorine-containing graphene oxide for improving dielectric and mechanical properties of polyimide composites. Ind Eng Chem Res 56:9926–9932CrossRefGoogle Scholar
  29. 29.
    Lu Y, Zhang S, Geng Z, Zhu K, Zhang M, Na R, Wang G (2017) Hybrid formation of graphene oxide-POSS and their effect on the dielectric properties of poly(aryl ether ketone) composites. New J Chem 41(8):3089–3096CrossRefGoogle Scholar
  30. 30.
    Layek RK, Samanta S, Chatterjee DP, Nandi AK (2010) Physical and mechanical properties of poly(methyl methacrylate)—functionalized graphene/poly(vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation. Polymer 51:5846–5856CrossRefGoogle Scholar
  31. 31.
    Layek RK, Das AK, Park MJ, Kim NH, Lee JH (2015) Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly(vinylidene fluoride) composites. Carbon 81:329–338CrossRefGoogle Scholar
  32. 32.
    Li H, Chen Z, Liu L, Chen J, Jiang M, Xiong C (2015) Poly(vinyl pyrrolidone)-coated graphene/poly(vinylidene fluoride) composite films with high dielectric permittivity and low loss. Compos Sci Technol 121:49–55CrossRefGoogle Scholar
  33. 33.
    Maity N, Mandal A, Nandi AK (2016) Hierarchical nanostructured polyaniline functionalized graphene/poly(vinylidene fluoride) composites for improved dielectric performances. Polymer 103:83–97CrossRefGoogle Scholar
  34. 34.
    Guan J, Xing C, Wang Y, Li Y, Li J (2017) Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos Sci Technol 138:98–105CrossRefGoogle Scholar
  35. 35.
    Zhang T, Huang W, Zhang N, Huang T, Yang J, Wang Y (2017) Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: high dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene. Eur Polym J 94:196–207CrossRefGoogle Scholar
  36. 36.
    Yang K, Huang X, Fang L, He J, Jiang P (2014) Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale 6:14740–14753CrossRefGoogle Scholar
  37. 37.
    Song S, Xia S, Jiang S, Lv X, Sun S, Li Q (2018) A facile strategy to enhance the dielectric and mechanical properties of MWCNTs/PVDF composites with the aid of MMA-co-GMA copolymer. Materials 11:347–360CrossRefGoogle Scholar
  38. 38.
    Li D, Song S, Li C, Cao C, Sun S, Zhang H (2015) Compatibilization effect of MMA-co-GMA copolymers on the properties of polyamide 6/poly(vinylidene fluoride) blends. J Polym Res 22:1–8CrossRefGoogle Scholar
  39. 39.
    Jr WSH, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  40. 40.
    Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, Gonçalves R, Cardoso VF et al (2018) Electroactive poly (vinylidene fluoride)-based structures for advanced applications. Nat Protoc 13:681–705CrossRefGoogle Scholar
  41. 41.
    Gomes J, Nunes JS, Sencadas V, Lanceros-Mendez S (2010) Influence of the β-phase content and degree of crystallinity on the piezo—and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19:065010–065018CrossRefGoogle Scholar
  42. 42.
    Martins P, Nunes JS, Hungerfordb G, Mirandaa D, Ferreiraa A, Sencadas V, Lanceros-Mendez S (2009) Local variation of the dielectric properties of poly(vinylidene fluoride) during the α- to β-phase transformation. Phys Lett A 373:177–180CrossRefGoogle Scholar
  43. 43.
    Martins P, Caparros C, Gonçalves R, Martins PM, Benelmekki M, Botelho G, Lanceros-Mendez S (2012) Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocom-posites for sensor and actuator applications. J Phys Chem C 116:15790–15794CrossRefGoogle Scholar
  44. 44.
    Martins P, Costa CM, Lanceros-Mendez S (2011) Nucleation of electroactive β-phase poly(vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Phys Lett A 103:233–237Google Scholar
  45. 45.
    Martins P, Costa CM, Benelmekki M, Botelhob G, Lanceros-Mendez S (2012) On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 14:2807–2812CrossRefGoogle Scholar
  46. 46.
    Martins P, Costa CM, Ferreira JCC, Lanceros-Mendez S (2012) Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. J Phys Chem B 116:794–801CrossRefGoogle Scholar
  47. 47.
    Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Mendez S (2012) Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci 47:1378–1388. CrossRefGoogle Scholar
  48. 48.
    Mejri R, Dias JC, Lopes AC, Hentati SB, Silva MM, Botelho G, de Ferro AM, Esperança JMSS et al (2015) Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J 71:304–313CrossRefGoogle Scholar
  49. 49.
    An N, Liu H, Ding Y, Zhang M, Tang Y (2011) Preparation and electroactive properties of a PVDF/nano-TiO2 composite film. Appl Surf Sci 257:3831–3835CrossRefGoogle Scholar
  50. 50.
    Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S (2011) Nucleation of the electroactive γ phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites. J Phys Chem C 115:18076–18082CrossRefGoogle Scholar
  51. 51.
    Lopes AC, Neves IC, Lanceros-Mendez S (2015) Ion exchange dependent electroactive phase content and electrical properties of poly(vinylidene fluoride)/Na(M)Y composites. J Phys Chem C 119:5211–5217CrossRefGoogle Scholar
  52. 52.
    Xing C, Zhao L, You J, Dong W, Cao X, Li Y (2012) Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116:8312–8320CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of EducationChangchun University of TechnologyChangchunChina
  2. 2.School of Chemical EngineeringChangchun University of TechnologyChangchunChina

Personalised recommendations